On a Canonical Form for Maxwell Equations and Convergence of Finite Element Schemes for a Vlasov-Maxwell System

被引:0
|
作者
Asadzadeh, M. [1 ,2 ]
机构
[1] Chalmers, Dept Math, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
关键词
Vlasov-Maxwell; canonical form; finite element; stability; convergence; DISCONTINUOUS GALERKIN METHODS; STREAMLINE DIFFUSION METHODS; NAVIER-STOKES EQUATIONS; FOKKER-PLANCK SYSTEM; CONSERVATION-LAWS;
D O I
10.1080/00411450.2014.922102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is a swift introduction to the nature of governing laws involved in the Maxwell equations. We then approximate a "one and one-half" dimensional relativistic Vlasov-Maxwell (VM) system using streamline diffusion finite element method. In this geometry d'Alembert representation for the fields functions guarantees the existence of a unique solution of the Maxwell equations. The VM system is then approximated using the streamline diffusion finite element method. In this part we derive some stability inequalities and optimal a priori error estimates due to the maximal available regularity of the exact solution.
引用
收藏
页码:336 / 351
页数:16
相关论文
共 50 条
  • [1] On the Vlasov-Maxwell equations
    Parsa, Z
    Zadorozhny, V
    2005 IEEE PARTICLE ACCELERATOR CONFERENCE (PAC), VOLS 1-4, 2005, : 3042 - 3044
  • [2] LINEARIZED SYSTEM OF VLASOV-MAXWELL EQUATIONS.
    Aslamazyan, E.I.
    Moscow University computational mathematics and cybernetics, 1984, (02) : 78 - 81
  • [3] ON THE STATIONARY SOLUTIONS FOR THE SYSTEM OF THE VLASOV-MAXWELL EQUATIONS
    RUDYKH, GA
    SIDOROV, NA
    SINITSYN, AV
    DOKLADY AKADEMII NAUK SSSR, 1988, 302 (03): : 594 - 597
  • [4] CONVERGENCE OF A PARTICLE METHOD FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    GLASSEY, R
    SCHAEFFER, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) : 1 - 25
  • [5] A numerical scheme for the integration of the Vlasov-Maxwell system of equations
    Mangeney, A
    Califano, F
    Cavazzoni, C
    Travnicek, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 179 (02) : 495 - 538
  • [6] Lie symmetry approach for The Vlasov-Maxwell system of equations
    Rashidi, Saeede
    Hejazi, S. Reza
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 1 - 12
  • [7] Hamiltonian splitting for the Vlasov-Maxwell equations
    Crouseilles, Nicolas
    Einkemmer, Lukas
    Faou, Erwan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 283 : 224 - 240
  • [8] Vlasov-Maxwell equations with spin effects
    Crouseilles, Nicolas
    Hervieux, Paul-Antoine
    Hong, Xue
    Manfredi, Giovanni
    JOURNAL OF PLASMA PHYSICS, 2023, 89 (02)
  • [9] CONVERGENCE OF HP-STREAMLINE DIFFUSION AND NITSCHE'S SCHEMES FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    Asadzadeh, M.
    Kowalczyk, P.
    Standar, C.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 92 - 94
  • [10] On the controllability of the relativistic Vlasov-Maxwell system
    Glass, Olivier
    Han-Kwan, Daniel
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (03): : 695 - 740