We study the maximum size of Sidon sets in unions of integer intervals. If A subset of N is the union of two intervals and if vertical bar A vertical bar = n (where vertical bar A vertical bar denotes the cardinality of A), we prove that A contains a Sidon set of size at least 0,876 root n. On the other hand, by using the small differences technique, we establish a bound of the maximum size of Sidon sets in the union of k intervals.
机构:
Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, BrazilUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
Kohayakawa, Yoshiharu
Lee, Sang June
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Math, Seoul, South KoreaUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
Lee, Sang June
Moreira, Carlos Gustavo
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, BrazilUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
Moreira, Carlos Gustavo
Rodl, Vojtech
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Math, Atlanta, GA 30322 USAUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
机构:
Univ Illinois, Dept Math Sci, Urbana, IL USA
Moscow Inst Phys & Technol, 9 Inst Skiy Per, Dolgoprodny 141701, Moscow Region, RussiaUniv Illinois, Dept Math Sci, Urbana, IL USA
Balogh, Jozsef
Li, Lina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Urbana, IL 61801 USAUniv Illinois, Dept Math Sci, Urbana, IL USA
Li, Lina
ACTA SCIENTIARUM MATHEMATICARUM,
2021,
87
(1-2):
: 3
-
21