In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold

被引:99
|
作者
Wu, Zongxi [1 ,2 ,3 ,4 ]
Li, Qing [2 ,3 ,4 ,5 ]
Xie, Shang [1 ,2 ,3 ,4 ]
Shan, Xiaofeng [1 ,2 ,3 ,4 ]
Cai, Zhigang [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Dept Oral & Maxillofacial Surg, Sch & Hosp Stomatol, 22 Zhongguancun South Ave, Beijing 100081, Peoples R China
[2] Natl Clin Res Ctr Oral Dis, Beijing, Peoples R China
[3] Natl Engn Lab Digital & Mat Technol Stomatol, Beijing, Peoples R China
[4] Beijing Key Lab Digital Stomatol, Beijing, Peoples R China
[5] Peking Univ, Ctr Digital Dent, Sch & Hosp Stomatol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Gelatin; Sodium alginate; 3D bioprinting; Schwann cells; Neural tissue engineering; PERIPHERAL-NERVE INJURIES; TISSUE; COLLAGEN; REGENERATION; HYDROGELS; NGF; PROLIFERATION; SECRETION; CONDUITS; REPAIR;
D O I
10.1016/j.msec.2019.110530
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Peripheral nerve injuries often cause different degrees of sensory and motor function loss. Currently, the repair effect of the "gold standard", autologous nerve transplantation, is unsatisfactory. Tissue engineering has the potential to tissue manipulation, regeneration, and growth, but achieving personalization and precision remains a challenge. In this study, we used 3D bioprinting to construct a nerve scaffold composed of gelatin/alginate hydrogel containing rat Schwann cells. On day 1 after printing, the Schwann cell survival rate was 91.87 +/- 0.55%. Cells could be cultured in the hydrogel for 7 days, and were well attached to the surface of the scaffold. On days 4 and 7, the 3D bioprinted scaffold released higher levels of nerve growth factor (NGF) than 2D culture group. Further, the mRNA levels of NGF, brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), and platelet-derived growth factor (PDGF) expressed on day 4 by Schwann cells were higher in the 3D bioprinted scaffold culture than in 2D culture. After 4 weeks of implantation, the cell-containing scaffold still showed partial lattice structure and positive S-100 beta immunofluorescence. These results indicated that the 3D bioprinted gelatin-sodium alginate/Schwann-cell composite scaffold improved cell adhesion and related factor expression. This 3D bioprinted composite scaffold showed good biocompatibility and could be a promising candidate in neural tissue engineering in the future.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Sodium alginate/gelatin with Silica nanoparticles a Novel Hydrogel for 3D Printing
    Soni, Raghav
    Roopavath, Uday Kiran
    Mahanta, Urbashi
    Deshpande, A. S.
    Rath, S. N.
    INTERNATIONAL CONFERENCE ON INVENTIVE RESEARCH IN MATERIAL SCIENCE AND TECHNOLOGY (ICIRMCT 2018), 2018, 1966
  • [22] Chondrocyte-laden gelatin/sodium alginate hydrogel integrating 3D printed PU scaffold for auricular cartilage reconstruction
    Wang, Hui
    Zhang, Jiaxin
    Liu, He
    Wang, Zhenguo
    Li, Guiwei
    Liu, Qingping
    Wang, Chenyu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [23] Bioprintable Alginate/Gelatin Hydrogel 3D In Vitro Model Systems Induce Cell Spheroid Formation
    Jiang, Tao
    Munguia-Lopez, Jose
    Flores-Torres, Salvador
    Grant, Joel
    Vijayakumar, Sanahan
    De Leon-Rodriguez, Antonio
    Kinsella, Joseph M.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (137):
  • [24] Cultivation of Melanoma Cells in vitro on a 3D Scaffold Prepared on the Basis of Gelatin
    Yatsenko A.A.
    Kushnarev V.A.
    Ustinov E.M.
    Leonov D.V.
    Kislitskiy V.M.
    Tseluyko S.S.
    Artemieva A.S.
    Cell and Tissue Biology, 2020, 14 (6) : 474 - 480
  • [25] In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers
    Mangirdas Malinauskas
    Daiva Baltriukiene
    Antanas Kraniauskas
    Paulius Danilevicius
    Rasa Jarasiene
    Raimondas Sirmenis
    Albertas Zukauskas
    Evaldas Balciunas
    Vytautas Purlys
    Roaldas Gadonas
    Virginija Bukelskiene
    Vytautas Sirvydis
    Algis Piskarskas
    Applied Physics A, 2012, 108 : 751 - 759
  • [26] Optimising the biocompatibility of 3D printed photopolymer constructs in vitro and in vivo
    Ngan, C. G. Y.
    O'Connell, C. D.
    Blanchard, R.
    Boyd-Moss, M.
    Williams, R. J.
    Bourke, J.
    Quigley, A.
    McKelvie, P.
    Kapsa, R. M., I
    Choong, P. F. M.
    BIOMEDICAL MATERIALS, 2019, 14 (03)
  • [27] In vitro and in vivo biocompatibility analysis of new 3D scaffolds for neurotransplantation
    Mishchenko, T.
    Kuznetsova, A.
    Novozhilova, M.
    Savelyev, A.
    Khaydukov, E.
    Vedunova, M.
    FEBS OPEN BIO, 2021, 11 : 337 - 338
  • [28] In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers
    Malinauskas, Mangirdas
    Baltriukiene, Daiva
    Kraniauskas, Antanas
    Danilevicius, Paulius
    Jarasiene, Rasa
    Sirmenis, Raimondas
    Zukauskas, Albertas
    Balciunas, Evaldas
    Purlys, Vytautas
    Gadonas, Roaldas
    Bukelskiene, Virginija
    Sirvydis, Vytautas
    Piskarskas, Algis
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 108 (03): : 751 - 759
  • [29] 3D bioprinted rat Schwann cell-laden structures with shape flexibility and enhanced nerve growth factor expression
    Xinda Li
    Xiong Wang
    Xuanzhi Wang
    Hongqing Chen
    Xinzhi Zhang
    Lian Zhou
    Tao Xu
    3 Biotech, 2018, 8
  • [30] Design of a New 3D Gelatin-Alginate Scaffold Loaded with Cannabis sativa Oil
    Antezana, Pablo Edmundo
    Municoy, Sofia
    Orive, Gorka
    Federico Desimone, Martin
    POLYMERS, 2022, 14 (21)