In vitro and in vivo biocompatibility analysis of new 3D scaffolds for neurotransplantation

被引:0
|
作者
Mishchenko, T. [1 ]
Kuznetsova, A. [1 ]
Novozhilova, M. [1 ]
Savelyev, A. [2 ]
Khaydukov, E. [2 ]
Vedunova, M. [1 ]
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod, Russia
[2] FSRC Crystallog & Photon RAS, Moscow, Russia
来源
FEBS OPEN BIO | 2021年 / 11卷
关键词
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
P-06.4-12
引用
收藏
页码:337 / 338
页数:2
相关论文
共 50 条
  • [1] In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers
    Mangirdas Malinauskas
    Daiva Baltriukiene
    Antanas Kraniauskas
    Paulius Danilevicius
    Rasa Jarasiene
    Raimondas Sirmenis
    Albertas Zukauskas
    Evaldas Balciunas
    Vytautas Purlys
    Roaldas Gadonas
    Virginija Bukelskiene
    Vytautas Sirvydis
    Algis Piskarskas
    Applied Physics A, 2012, 108 : 751 - 759
  • [2] Optimising the biocompatibility of 3D printed photopolymer constructs in vitro and in vivo
    Ngan, C. G. Y.
    O'Connell, C. D.
    Blanchard, R.
    Boyd-Moss, M.
    Williams, R. J.
    Bourke, J.
    Quigley, A.
    McKelvie, P.
    Kapsa, R. M., I
    Choong, P. F. M.
    BIOMEDICAL MATERIALS, 2019, 14 (03)
  • [3] In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers
    Malinauskas, Mangirdas
    Baltriukiene, Daiva
    Kraniauskas, Antanas
    Danilevicius, Paulius
    Jarasiene, Rasa
    Sirmenis, Raimondas
    Zukauskas, Albertas
    Balciunas, Evaldas
    Purlys, Vytautas
    Gadonas, Roaldas
    Bukelskiene, Virginija
    Sirvydis, Vytautas
    Piskarskas, Algis
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 108 (03): : 751 - 759
  • [4] Polyhydroxybutyrate/Chitosan 3D Scaffolds Promote In Vitro and In Vivo Chondrogenesis
    Maria Giretova
    Lubomir Medvecky
    Eva Petrovova
    Dasa Cizkova
    Jan Danko
    Dagmar Mudronova
    Lucia Slovinska
    Radovan Bures
    Applied Biochemistry and Biotechnology, 2019, 189 : 556 - 575
  • [5] Polyhydroxybutyrate/Chitosan 3D Scaffolds Promote In Vitro and In Vivo Chondrogenesis
    Giretova, Maria
    Medvecky, Lubomir
    Petrovova, Eva
    Cizkova, Dasa
    Danko, Jan
    Mudronova, Dagmar
    Slovinska, Lucia
    Bures, Radovan
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2019, 189 (02) : 556 - 575
  • [6] Hypoxia promotes nucleus pulposus phenotype in 3D scaffolds in vitro and in vivo
    Feng, Ganjun
    Li, Li
    Hong, Ying
    Liu, Hao
    Song, Yueming
    Pei, Fuxing
    Ma, Peter X.
    Gong, Quan
    Gupte, Melanie J.
    JOURNAL OF NEUROSURGERY-SPINE, 2014, 21 (02) : 303 - 309
  • [7] Preparation and Biocompatibility Characterization of Silk Fibroin 3D Scaffolds
    Guo, Xiaolan
    Lin, Nan
    Lu, Shijun
    Zhang, Feng
    Zuo, Baoqi
    ACS APPLIED BIO MATERIALS, 2021, 4 (02) : 1369 - 1380
  • [8] Physical Properties and Biocompatibility of 3D Hybrid PLGA Based Scaffolds
    Amin, Muhammad Azri Ifwat bin Mohamed
    Tahir, Aisyah Hanani Md Ali
    Azhim, Azran
    Sha'ban, Munirah
    2018 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2018, : 480 - 484
  • [9] Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing
    Leukers, B
    Gülkan, H
    Irsen, SH
    Milz, S
    Tille, C
    Seitz, H
    Schieker, M
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2005, 36 (12) : 781 - 787
  • [10] 3D printed β-tricalcium phosphate versus synthetic bone mineral scaffolds: A comparative in vitro study of biocompatibility
    Slavin, Blaire V.
    Mirsky, Nicholas A.
    Stauber, Zachary M.
    Nayak, Vasudev Vivekanand
    Smay, James E.
    Rivera, Cristobal F.
    Mijares, Dindo Q.
    Coelho, Paulo G.
    Cronstein, Bruce N.
    Tovar, Nick
    Witek, Lukasz
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2024, 35 (04) : 365 - 375