Three-dimensional dimeron as a stable topological object

被引:15
|
作者
Liu, Yong-Kai [1 ]
Yang, Shi-Jie [1 ,2 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 04期
关键词
VORTEX RINGS; EINSTEIN; KNOTS; SOLITONS; DYNAMICS;
D O I
10.1103/PhysRevA.91.043616
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Searching for novel topological objects is always an intriguing task for scientists in various fields. We study a three-dimensional (3D) topological structure called a 3D dimeron in trapped two-component Bose-Einstein condensates. The 3D dimeron differs from the conventional 3D skyrmion for the condensates hosting two interlocked vortex rings. We demonstrate that the vortex rings are connected by a singular string and the complexity constitutes a vortex molecule. The stability of the 3D dimeron is examined in two different models using the imaginary time evolution method. We find that the stable 3D dimeron can be naturally generated from a vortex-free Gaussian wave packet incorporating a synthetic non-Abelian gauge potential into the condensates.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Three-dimensional topological phase on the diamond lattice
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2009, 79 (07):
  • [42] Topological classification of real three-dimensional cubics
    Krasnov, V. A.
    MATHEMATICAL NOTES, 2009, 85 (5-6) : 841 - 847
  • [44] Topological three-dimensional dissipative optical solitons
    Veretenov, N. A.
    Fedorov, S. V.
    Rosanov, N. N.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2124):
  • [45] Topological spin excitations in a three-dimensional antiferromagnet
    Yao, Weiliang
    Li, Chenyuan
    Wang, Lichen
    Xue, Shangjie
    Dan, Yang
    Iida, Kazuki
    Kamazawa, Kazuya
    Li, Kangkang
    Fang, Chen
    Li, Yuan
    NATURE PHYSICS, 2018, 14 (10) : 1011 - +
  • [46] Acoustic analogues of three-dimensional topological insulators
    Cheng He
    Hua-Shan Lai
    Bo He
    Si-Yuan Yu
    Xiangyuan Xu
    Ming-Hui Lu
    Yan-Feng Chen
    Nature Communications, 11
  • [47] Three-dimensional topological insulator based nanospaser
    Paudel, Hari P.
    Apalkov, Vadym
    Stockman, Mark I.
    PHYSICAL REVIEW B, 2016, 93 (15)
  • [48] Equipment for object three-dimensional orientation determination
    Avsiyevich, VN
    Chmykh, MK
    Fateyev, YL
    Grebenninov, AV
    Kokorin, VI
    Novikov, VB
    Sushkin, IN
    2ND INTERNATIONAL CONFERENCE ON SATELLITE COMMUNICATIONS - PROCEEDINGS OF ICSC '96, VOLS 1-4, 1996, : 230 - 231
  • [49] Development of three-dimensional object completion in infancy
    Soska, Kasey C.
    Johnson, Scott P.
    CHILD DEVELOPMENT, 2008, 79 (05) : 1230 - 1236
  • [50] Three-dimensional measurement for small moving object
    Manabe, Y
    Uranishi, Y
    Yasumuro, Y
    Imura, M
    Chihara, KU
    VIDEOMETRICS VIII, 2005, 5665 : 235 - 242