Three-dimensional dimeron as a stable topological object

被引:15
|
作者
Liu, Yong-Kai [1 ]
Yang, Shi-Jie [1 ,2 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 04期
关键词
VORTEX RINGS; EINSTEIN; KNOTS; SOLITONS; DYNAMICS;
D O I
10.1103/PhysRevA.91.043616
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Searching for novel topological objects is always an intriguing task for scientists in various fields. We study a three-dimensional (3D) topological structure called a 3D dimeron in trapped two-component Bose-Einstein condensates. The 3D dimeron differs from the conventional 3D skyrmion for the condensates hosting two interlocked vortex rings. We demonstrate that the vortex rings are connected by a singular string and the complexity constitutes a vortex molecule. The stability of the 3D dimeron is examined in two different models using the imaginary time evolution method. We find that the stable 3D dimeron can be naturally generated from a vortex-free Gaussian wave packet incorporating a synthetic non-Abelian gauge potential into the condensates.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Augmented topological maps for three-dimensional navigation
    Peremans, Herbert
    Vanderelst, Dieter
    BEHAVIORAL AND BRAIN SCIENCES, 2013, 36 (05) : 560 - 561
  • [22] Quantum oscillations in three-dimensional topological insulators
    Vedeneev, S. I.
    PHYSICS-USPEKHI, 2017, 60 (04) : 385 - 401
  • [23] Experimental perspective on three-dimensional topological semimetals
    Lv, B. Q.
    Qian, T.
    Ding, H.
    REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
  • [24] Symmetry enrichment in three-dimensional topological phases
    Ning, Shang-Qiang
    Liu, Zheng-Xin
    Ye, Peng
    PHYSICAL REVIEW B, 2016, 94 (24)
  • [25] Localized surfaces of three-dimensional topological insulators
    Chou, Yang-Zhi
    Nandkishore, Rahul M.
    Radzihovsky, Leo
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [26] Topological bifurcations in three-dimensional magnetic fields
    Brown, DS
    Priest, ER
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1991): : 3931 - 3951
  • [27] Acoustic analogues of three-dimensional topological insulators
    He, Cheng
    Lai, Hua-Shan
    He, Bo
    Yu, Si-Yuan
    Xu, Xiangyuan
    Lu, Ming-Hui
    Chen, Yan-Feng
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [28] Topological spin excitations in a three-dimensional antiferromagnet
    Weiliang Yao
    Chenyuan Li
    Lichen Wang
    Shangjie Xue
    Yang Dan
    Kazuki Iida
    Kazuya Kamazawa
    Kangkang Li
    Chen Fang
    Yuan Li
    Nature Physics, 2018, 14 : 1011 - 1015
  • [29] Roots and decompositions of three-dimensional topological objects
    Matveev, S. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2012, 67 (03) : 459 - 507
  • [30] Three-Dimensional Topological Insulators on the Pyrochlore Lattice
    Guo, H. -M.
    Franz, M.
    PHYSICAL REVIEW LETTERS, 2009, 103 (20)