Target-Cognisant Siamese Network for Robust Visual Object Tracking *

被引:2
|
作者
Jiang, Yingjie [1 ]
Song, Xiaoning [1 ]
Xu, Tianyang [1 ]
Feng, Zhenhua [2 ,3 ]
Wu, Xiaojun [1 ]
Kittler, Josef [3 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Peoples R China
[2] Univ Surrey, Dept Comp Sci, Guildford GU2 7XH, England
[3] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford GU2 7XH, England
基金
中国国家自然科学基金;
关键词
Visual object tracking; Siamese network; Anchor -free regression; PEDESTRIAN TRACKING;
D O I
10.1016/j.patrec.2022.09.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Siamese trackers have become the mainstream framework for visual object tracking in recent years. However, the extraction of the template and search space features is disjoint for a Siamese tracker, resulting in a limited interaction between its classification and regression branches. This degrades the model capacity accurately to estimate the target, especially when it exhibits severe appearance variations. To address this problem, this paper presents a target-cognisant Siamese network for robust visual tracking. First, we introduce a new target-cognisant attention block that computes spatial cross-attention between the template and search branches to convey the relevant appearance information before correlation. Second, we advocate two mechanisms to promote the precision of obtained bounding boxes under complex tracking scenarios. Last, we propose a max filtering module to utilise the guidance of the regression branch to filter out potential interfering predictions in the classification map. The experimental results obtained on challenging benchmarks demonstrate the competitive performance of the proposed method.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [21] Siamese Visual Object Tracking: A Survey
    Ondrasovic, Milan
    Tarabek, Peter
    IEEE ACCESS, 2021, 9 : 110149 - 110172
  • [22] Robust ambiguous target handling for visual object tracking
    Choeychuen, Kairoek
    Kumhom, Pinit
    Chamnongthai, Kosin
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2010, 64 (10) : 960 - 970
  • [23] SiamDMU: Siamese Dual Mask Update Network for Visual Object Tracking
    Liu, Jing
    Wang, Han
    Ma, Chao
    Su, Yuting
    Yang, Xiaokang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (02): : 1656 - 1669
  • [24] Visual object tracking based on adaptive Siamese and motion estimation network
    Kashiani, Hossein
    Shokouhi, Shahriar B.
    IMAGE AND VISION COMPUTING, 2019, 83-84 : 17 - 28
  • [25] SiamBC: Context-Related Siamese Network for Visual Object Tracking
    He, Xiangwen
    Sun, Yan
    IEEE ACCESS, 2022, 10 : 76998 - 77010
  • [26] Siamese global location-aware network for visual object tracking
    Li, Jiafeng
    Li, Bin
    Ding, Guodong
    Zhuo, Li
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3607 - 3620
  • [27] Visual object tracking based on siamese network and online patch filters
    Xiong, Jiangfeng
    Xing, Xiaofen
    Chen, Hanzao
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [28] Siamese global location-aware network for visual object tracking
    Jiafeng Li
    Bin Li
    Guodong Ding
    Li Zhuo
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3607 - 3620
  • [29] SiamRAAN: Siamese Residual Attentional Aggregation Network for Visual Object Tracking
    Xin, Zhiyi
    Yu, Junyang
    He, Xin
    Song, Yalin
    Li, Han
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [30] A novel Siamese Attention Network for visual object tracking of autonomous vehicles
    Chen, Jia
    Ai, Yibo
    Qian, Yuhan
    Zhang, Weidong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (10-11) : 2764 - 2775