SiamBC: Context-Related Siamese Network for Visual Object Tracking

被引:1
|
作者
He, Xiangwen [1 ]
Sun, Yan [1 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
来源
IEEE ACCESS | 2022年 / 10卷
基金
中国国家自然科学基金;
关键词
Object tracking; Siamese network; cooperate attention; cross correlation;
D O I
10.1109/ACCESS.2022.3192466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The existing Siamese trackers have achieved increasingly results in visual tracking. However, the contextual association between template and search region is not been fully studied in previous Siamese Network-based methods, meanwhile, the feature information of the cross-correlation layer is investigated insufficiently. In this paper, we propose a new context-related Siamese network called SiamBC to address these issues. By introducing a cooperate attention mechanism based on block deformable convolution sampling features, the tracker can pre-match and enhance similar features to improve accuracy and robustness when the context embedding between the template and search fully interacted. In addition, we design a cascade cross correlation module. The cross-correlation layer of the stacked structure can gradually refine the deep information of the mined features and further improve the accuracy. Extensive experiments demonstrate the effectiveness of our tracker on six tracking benchmarks including OTB100, VOT2019, GOT10k, LaSOT, TrackingNet and UAV123. The code will be available at haps://github.conilSoarkey/SiamBC.
引用
收藏
页码:76998 / 77010
页数:13
相关论文
共 50 条
  • [1] Siamese Feedback Network for Visual Object Tracking
    Gwon, Mi-Gyeong
    Kim, Jinhee
    Um, Gi-Mun
    Lee, HeeKyung
    Seo, Jeongil
    Lim, Seong Yong
    Yang, Seung-Jun
    Kim, Wonjun
    [J]. IEIE Transactions on Smart Processing and Computing, 2022, 11 (01): : 24 - 33
  • [2] Online Siamese Network for Visual Object Tracking
    Chang, Shuo
    Li, Wei
    Zhang, Yifan
    Feng, Zhiyong
    [J]. SENSORS, 2019, 19 (08)
  • [3] Context-aware Siamese network for object tracking
    Zhang, Jianwei
    Wang, Jingchao
    Zhang, Huanlong
    Miao, Mengen
    Wu, Di
    [J]. IET IMAGE PROCESSING, 2023, 17 (01) : 215 - 226
  • [4] Learning Dynamic Siamese Network for Visual Object Tracking
    Guo, Qing
    Feng, Wei
    Zhou, Ce
    Huang, Rui
    Wan, Liang
    Wang, Song
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1781 - 1789
  • [5] Visual Object Tracking by Hierarchical Attention Siamese Network
    Shen, Jianbing
    Tang, Xin
    Dong, Xingping
    Shao, Ling
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3068 - 3080
  • [6] SiamMN: Siamese modulation network for visual object tracking
    Fu, Li-hua
    Ding, Yu
    Du, Yu-bin
    Zhang, Bo
    Wang, Lu-yuan
    Wang, Dan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (43-44) : 32623 - 32641
  • [7] SiamMN: Siamese modulation network for visual object tracking
    Li-hua Fu
    Yu Ding
    Yu-bin Du
    Bo Zhang
    Lu-yuan Wang
    Dan Wang
    [J]. Multimedia Tools and Applications, 2020, 79 : 32623 - 32641
  • [8] Multiple Context Features in Siamese Networks for Visual Object Tracking
    Morimitsu, Henrique
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 : 116 - 131
  • [9] Siamese Attentional Cascade Keypoints Network for Visual Object Tracking
    Wang, Ershen
    Wang, Donglei
    Huang, Yufeng
    Tong, Gang
    Xu, Song
    Pang, Tao
    [J]. IEEE ACCESS, 2021, 9 : 7243 - 7254
  • [10] MASNet: mixed attention Siamese network for visual object tracking
    Zhang, Jianwei
    Zhang, Zhichen
    Zhang, Huanlong
    Wang, Jingchao
    Wang, He
    Zheng, Menya
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)