Multiple Context Features in Siamese Networks for Visual Object Tracking

被引:1
|
作者
Morimitsu, Henrique [1 ]
机构
[1] Univ Grenoble Alpes, INRIA, CNRS, Grenoble INP,LJK, F-38000 Grenoble, France
来源
关键词
Object tracking; Siamese network; ResNet;
D O I
10.1007/978-3-030-11009-3_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Siamese networks have been successfully utilized to learn a robust matching function between pairs of images. Visual object tracking methods based on siamese networks have been gaining popularity recently due to their robustness and speed. However, existing siamese approaches are still unable to perform on par with the most accurate trackers. In this paper, we propose to extend the SiamFC tracker [1] to extract features at multiple context and semantic levels from very deep networks. We show that our approach effectively extracts complementary features for siamese matching from different layers, which provides a significant performance boost when fused. Experimental results on VOT and OTB datasets show that our multi-context tracker is comparable to the most accurate methods, while still being faster than most of them. In particular, we outperform several other state-of-the-art siamese methods.
引用
收藏
页码:116 / 131
页数:16
相关论文
共 50 条
  • [1] Multiple convolutional features in Siamese networks for object tracking
    Li Z.
    Bilodeau G.-A.
    Bouachir W.
    [J]. Machine Vision and Applications, 2021, 32 (03)
  • [2] Deformable Siamese Attention Networks for Visual Object Tracking
    Yu, Yuechen
    Xiong, Yilei
    Huang, Weilin
    Scott, Matthew R.
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6727 - 6736
  • [3] Siamese Graph Attention Networks for robust visual object tracking
    Lu, Junjie
    Li, Shengyang
    Guo, Weilong
    Zhao, Manqi
    Yang, Jian
    Liu, Yunfei
    Zhou, Zhuang
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 229
  • [4] Distractor-Aware Siamese Networks for Visual Object Tracking
    Zhu, Zheng
    Wang, Qiang
    Li, Bo
    Wu, Wei
    Yan, Junjie
    Hu, Weiming
    [J]. COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 : 103 - 119
  • [5] SiamBC: Context-Related Siamese Network for Visual Object Tracking
    He, Xiangwen
    Sun, Yan
    [J]. IEEE ACCESS, 2022, 10 : 76998 - 77010
  • [6] SiamCross: Siamese Cross Object-Aware Networks for Visual Object Tracking
    Huang, Wang-Hui
    Feng, Yong
    Qiang, Bao-Hua
    Pei, Yu-Xuan
    Luo, Yue
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (10): : 2151 - 2166
  • [7] Multiple Object Tracking via Feature Pyramid Siamese Networks
    Lee, Sangyun
    Kim, Euntai
    [J]. IEEE ACCESS, 2019, 7 : 8181 - 8194
  • [8] Siamese Visual Object Tracking: A Survey
    Ondrasovic, Milan
    Tarabek, Peter
    [J]. IEEE ACCESS, 2021, 9 : 110149 - 110172
  • [9] Visual Object Tracking With Discriminative Filters and Siamese Networks: A Survey and Outlook
    Javed, Sajid
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Khan, Muhammad Haris
    Felsberg, Michael
    Matas, Jiri
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6552 - 6574
  • [10] Use of multiple visual features for object tracking
    Pasqual, AA
    Aizawa, K
    Hatori, M
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 946 - 955