Nondegeneracy of heteroclinic orbits for a class of potentials on the plane

被引:0
|
作者
Jendrej, Jacek [1 ,2 ]
Smyrnelis, Panayotis [3 ]
机构
[1] Univ Sorbonne Paris Nord, CNRS, 99 Av Jean Baptiste Clement, F-93430 Villetaneuse, France
[2] Univ Sorbonne Paris Nord, LAGA, 99 Av Jean Baptiste Clement, F-93430 Villetaneuse, France
[3] Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Spain
基金
欧盟地平线“2020”;
关键词
Heteroclinic orbit; Nondegenerate; Minimizer; Hamiltonian systems; Phase transition; CONNECTION PROBLEM; MINIMIZERS; EXISTENCE; SYSTEM;
D O I
10.1016/j.aml.2021.107681
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W : R-m -> R, m > 2, there exists an arbitrary small perturbation of W, such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W : R-2 -> [0, infinity) that can be written as W(z) = |f(z)|(2), with f : C -> C a holomorphic function. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] NONPERIODIC PERTURBATIONS AND TRANSVERSAL HETEROCLINIC ORBITS
    ZHU, DM
    CHINESE SCIENCE BULLETIN, 1995, 40 (09): : 715 - 718
  • [32] Heteroclinic orbits in the T and the Lu systems
    Tigan, Gheorghe
    Constantinescu, Dana
    CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 20 - 23
  • [33] HETEROCLINIC ORBITS IN A SPHERICALLY INVARIANT SYSTEM
    ARMBRUSTER, D
    CHOSSAT, P
    PHYSICA D, 1991, 50 (02): : 155 - 176
  • [34] HETEROCLINIC ORBITS IN A MODEL FOR LANGMUIR CIRCULATIONS
    MOROZ, IM
    PHYSICS LETTERS A, 1985, 110 (02) : 109 - 112
  • [35] Chevron folding patterns and heteroclinic orbits
    Budd, Christopher J.
    Chakhchoukh, Amine N.
    Dodwell, Timothy J.
    Kuske, Rachel
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 330 : 32 - 46
  • [36] Effect of colored noise on heteroclinic orbits
    Angilella, Jean-Regis
    PHYSICAL REVIEW E, 2019, 99 (03)
  • [37] Heteroclinic orbits of semilinear parabolic equations
    Fiedler, B
    Rocha, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (01) : 239 - 281
  • [38] A note on species realizations and nondegeneracy of potentials
    Lopez-Aguayo, Daniel
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (02)
  • [39] Nondegeneracy and integral count of frozen planet orbits in helium
    Cieliebak, Kai
    Frauenfelder, Urs
    Volkov, Evgeny
    TUNISIAN JOURNAL OF MATHEMATICS, 2023, 5 (04) : 713 - 770
  • [40] The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application
    Shuangbao Li
    Chao Shen
    Wei Zhang
    Yuxin Hao
    Nonlinear Dynamics, 2016, 85 : 1091 - 1104