Nondegeneracy of heteroclinic orbits for a class of potentials on the plane

被引:0
|
作者
Jendrej, Jacek [1 ,2 ]
Smyrnelis, Panayotis [3 ]
机构
[1] Univ Sorbonne Paris Nord, CNRS, 99 Av Jean Baptiste Clement, F-93430 Villetaneuse, France
[2] Univ Sorbonne Paris Nord, LAGA, 99 Av Jean Baptiste Clement, F-93430 Villetaneuse, France
[3] Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Spain
基金
欧盟地平线“2020”;
关键词
Heteroclinic orbit; Nondegenerate; Minimizer; Hamiltonian systems; Phase transition; CONNECTION PROBLEM; MINIMIZERS; EXISTENCE; SYSTEM;
D O I
10.1016/j.aml.2021.107681
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W : R-m -> R, m > 2, there exists an arbitrary small perturbation of W, such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W : R-2 -> [0, infinity) that can be written as W(z) = |f(z)|(2), with f : C -> C a holomorphic function. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] New Heteroclinic Orbits Coined
    Wang, Haijun
    Li, Chang
    Li, Xianyi
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (12):
  • [22] NUMERICAL COMPUTATION OF HETEROCLINIC ORBITS
    DOEDEL, EJ
    FRIEDMAN, MJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 26 (1-2) : 155 - 170
  • [23] Orbits Heteroclinic to Invariant Manifolds
    Zhu Deming Department of Mathematics East China Normal University Shanghai
    Acta Mathematica Sinica,English Series, 1996, (04) : 372 - 373
  • [24] HETEROCLINIC ORBITS OF MINIMAL GEODESICS
    BOLOTIN, SV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1992, (01): : 92 - 96
  • [25] Out-of-plane chaotic motions of a tethered satellite induced by heteroclinic orbits breaking
    Yu, Ben-Song
    Tang, Yu-Ning
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2022, 35 (06): : 1329 - 1335
  • [26] Symmetric periodic orbits near heteroclinic loops at infinity for a class of polynomial vector fields
    Corbera, Montserrat
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (11): : 3401 - 3410
  • [27] Heteroclinic orbits for a discrete pendulum equation
    Xiao, Huafeng
    Yu, Jianshe
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (09) : 1267 - 1280
  • [28] Heteroclinic Orbits in a Model of Crystal Growth
    Nicholas D.Kazarinoff
    陆春卿
    人工晶体学报, 1988, (Z1) : 166 - 166
  • [29] Homoclinic/heteroclinic recurrent orbits and horseshoe
    Dong, Xiujuan
    Li, Yong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 420 : 150 - 179
  • [30] NON-COLLISION ORBITS FOR A CLASS OF KLEPERIAN POTENTIALS
    AMBROSETTI, A
    ZELATI, VC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (19): : 813 - 815