Nondegeneracy of heteroclinic orbits for a class of potentials on the plane

被引:0
|
作者
Jendrej, Jacek [1 ,2 ]
Smyrnelis, Panayotis [3 ]
机构
[1] Univ Sorbonne Paris Nord, CNRS, 99 Av Jean Baptiste Clement, F-93430 Villetaneuse, France
[2] Univ Sorbonne Paris Nord, LAGA, 99 Av Jean Baptiste Clement, F-93430 Villetaneuse, France
[3] Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Spain
基金
欧盟地平线“2020”;
关键词
Heteroclinic orbit; Nondegenerate; Minimizer; Hamiltonian systems; Phase transition; CONNECTION PROBLEM; MINIMIZERS; EXISTENCE; SYSTEM;
D O I
10.1016/j.aml.2021.107681
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W : R-m -> R, m > 2, there exists an arbitrary small perturbation of W, such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W : R-2 -> [0, infinity) that can be written as W(z) = |f(z)|(2), with f : C -> C a holomorphic function. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Behavior of point vortices in a plane and existence of heteroclinic orbits
    Nakaki, T
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS, 1999, 5 (1-4): : 159 - 169
  • [2] HOMOCLINIC AND HETEROCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS
    RABINOWITZ, PH
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (01) : 1 - 36
  • [3] HETEROCLINIC ORBITS FOR A CLASS OF HAMILTONIAN SYSTEMS ON RIEMANNIAN MANIFOLDS
    Liu, Fei
    Llibre, Jaume
    Zhang, Xiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (03) : 1097 - 1111
  • [4] Homoclinic and Heteroclinic Orbits for a Class of Singular Planar Newtonian Systems
    Janczewska, Joanna
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 39 - 43
  • [5] The Contrast Structures for a Class of Singularly Perturbed Systems with Heteroclinic Orbits
    Xu, Han
    Jin, Yinlai
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [6] Bifurcations of Heteroclinic Orbits
    Kenneth R. Meyer
    Patrick McSwiggen
    Xiaojie Hou
    Journal of Dynamics and Differential Equations, 2010, 22 : 367 - 380
  • [7] Bifurcations of Heteroclinic Orbits
    Meyer, Kenneth R.
    McSwiggen, Patrick
    Hou, Xiaojie
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (03) : 367 - 380
  • [8] Periodic orbits for a class of galactic potentials
    Felipe Alfaro
    Jaume Llibre
    Ernesto Pérez-Chavela
    Astrophysics and Space Science, 2013, 344 : 39 - 44
  • [9] Periodic orbits for a class of galactic potentials
    Alfaro, Felipe
    Llibre, Jaume
    Perez-Chavela, Ernesto
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 344 (01) : 39 - 44
  • [10] The Existence of Heteroclinic Orbits for a Class of the Second-Order Hamiltonian System
    Huang, Wen-nian
    Tang, X. H.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (01) : 9 - 20