LAW OF THE SUM OF BERNOULLI RANDOM VARIABLES

被引:1
|
作者
Chevallier, N. [1 ]
机构
[1] Univ Haute Alsace, F-68093 Mulhouse, France
关键词
Bernoulli random variable; binomial law;
D O I
10.1137/S0040585X97984644
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Delta(n) be the set of all possible joint distributions of n Bernoulli random variables X(1), ... , X(n). Suppose that Delta(n), which is a simplex in the 2(n)-dimensional space, is endowed with the normalized Lebesgue measure mu(n). Suppose also that the integer n is large. Then we show that there is a subset Delta of Delta(n), whose measure mu(n)(Delta) is very close to 1, such that if the joint distribution of (X(1), ... , X(n)) is in Delta, then the law of the sum X(1) + ... + X(n) is close to the binomial law B( n, 1/2). This result does not need any independence assumption. Next, we show a result of the same kind when Delta(n) is endowed with another probability measure nu(n).
引用
收藏
页码:27 / 41
页数:15
相关论文
共 50 条
  • [21] On Sums of Products of Bernoulli Variables and Random Permutations
    Anatole Joffe
    Éric Marchand
    François Perron
    Paul Popadiuk
    [J]. Journal of Theoretical Probability, 2004, 17 : 285 - 292
  • [22] Extremal properties of sums of Bernoulli random variables
    León, CA
    Perron, F
    [J]. STATISTICS & PROBABILITY LETTERS, 2003, 62 (04) : 345 - 354
  • [23] On Sums of Bernoulli Random Variables Modulo 3
    A. D. Yashunskii
    [J]. Mathematical Notes, 2022, 111 : 166 - 169
  • [24] Comparing sums of exchangeable Bernoulli random variables
    Lefevre, C.
    Utev, S.
    [J]. Journal of Applied Probability, 33 (02):
  • [25] Limit theorems for correlated Bernoulli random variables
    James, Barry
    James, Kang
    Qi, Yongcheng
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (15) : 2339 - 2345
  • [26] Exchangeable Bernoulli random variables and Bayes' postulate
    Banerjee, Moulinath
    Richardson, Thomas
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 2193 - 2208
  • [27] POISSON APPROXIMATION FOR RANDOM SUMS OF BERNOULLI RANDOM-VARIABLES
    YANNAROS, N
    [J]. STATISTICS & PROBABILITY LETTERS, 1991, 11 (02) : 161 - 165
  • [28] A note on the sum of uniform random variables
    Buonocore, Aniello
    Pirozzi, Enrica
    Caputo, Luigia
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (19) : 2092 - 2097
  • [29] SUM OF EXPONENTIAL RANDOM-VARIABLES
    DEMARET, JC
    GARCET, A
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1977, 31 (11): : 445 - 448
  • [30] CONVERGENCE OF A SUM OF INDEPENDENT RANDOM VARIABLES
    BARRA, GD
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1963, 59 (02): : 411 - &