On Sums of Products of Bernoulli Variables and Random Permutations

被引:0
|
作者
Anatole Joffe
Éric Marchand
François Perron
Paul Popadiuk
机构
[1] Département de Mathématiques et de Statistique,
[2] Department of Mathematics and Statistics,undefined
[3] Department of Mathematics and Statistics,undefined
来源
关键词
Random permutations; Poisson distribution; Bernouilli random variables;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xk}k≥1 be independent Bernoulli random variables with parameters pk. We study the distribution of the number or runs of length 2: that is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$S_n = \sum {_{k = 1}^n {\text{ }}X_k X_{k + 1}}$$ \end{document}. Let S=limn→∞Sn. For the particular case pk=1/(k+B), B being given, we show that the distribution of S is a Beta mixture of Poisson distributions. When B=0 this is a Poisson(1) distribution. For the particular case pk=p for all k we obtain the generating function of Sn and the limiting distribution of Sn for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$p = \sqrt {\lambda h} + o(1/\sqrt n )$$ \end{document}.
引用
收藏
页码:285 / 292
页数:7
相关论文
共 50 条