Liouville's theorem in conformal geometry

被引:11
|
作者
Kuehnel, Wolfgang
Rademacher, Hans-Bert
机构
[1] Univ Stuttgart, Inst Geomet & Topol, D-70550 Stuttgart, Germany
[2] Univ Leipzig, Math Inst, D-04081 Leipzig, Germany
来源
关键词
semi-Riemannian manifold; conformal mapping; Ricci tensor; null congruence; dilatation; inversion; homothety; cone metric;
D O I
10.1016/j.matpur.2007.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lionville's theorem states that all conformal transformations of E '' and S '' (n >= 3) are restrictions of Mobius transformations. As a generalization, we determine all conformal mappings of semi-Riemannian manifolds preserving pointwise the Ricci tensor. It turns out that, up to isometrics, they are essentially of the same type as in the classical case but they can exist for metrics different from the Euclidean metric and spherical metric. (C) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 50 条
  • [41] Ramanujan's master theorem for sturm liouville operator
    Jotsaroop, K.
    Pusti, Sanjoy
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (03): : 555 - 593
  • [42] Does Liouville's theorem imply quantum mechanics?
    Syros, C
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (02): : 161 - 189
  • [43] A generalization of Liouville's theorem on integration in finite terms
    Leerawat, U
    Laohakosol, V
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2002, 39 (01) : 13 - 30
  • [44] Conformal frames and the validity of Birkhoff's theorem
    Capozziello, S.
    Saez-Gomez, D.
    TOWARDS NEW PARADIGMS: PROCEEDING OF THE SPANISH RELATIVITY MEETING 2011, 2012, 1458 : 347 - 350
  • [45] An analogue of Liouville's Theorem and an application to cubic surfaces
    McKinnon, David
    Roth, Mike
    EUROPEAN JOURNAL OF MATHEMATICS, 2016, 2 (04) : 929 - 959
  • [46] Ramanujan’s master theorem for sturm liouville operator
    K. Jotsaroop
    Sanjoy Pusti
    Monatshefte für Mathematik, 2022, 199 : 555 - 593
  • [47] On conformal distortion and Sullivan's sector theorem
    De Faria, E
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (01) : 67 - 74
  • [48] Conformal bootstrap in Liouville theory
    Guillarmou, Colin
    Kupiainen, Antti
    Rhodes, Remi
    Aargas, Vincent
    ACTA MATHEMATICA, 2024, 233 (01) : 33 - 194
  • [49] A LIOUVILLE THEOREM ON A MANIFOLD
    GRIGORYAN, AA
    RUSSIAN MATHEMATICAL SURVEYS, 1983, 37 (03) : 209 - 210
  • [50] Extension of the theorem of Liouville
    Carleman, T
    ACTA MATHEMATICA, 1927, 48 (3-4) : 363 - 366