Ramanujan's master theorem for sturm liouville operator

被引:0
|
作者
Jotsaroop, K. [1 ]
Pusti, Sanjoy [2 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Math, Mohali, India
[2] Indian Inst Technol, Dept Math, Bombay, Maharashtra, India
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 199卷 / 03期
关键词
Ramanujan's master theorem; Compact dual; Sturm Liouville operator;
D O I
10.1007/s00605-022-01769-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove an analogue of the Ramanujan's master theorem in the setting of Sturm Liouville operator L = d(2)/dt(2) + A'(t)/A(t) d/dt, on (0,infinity), where A(t) = (sinh t)(2 alpha+1)(cosh t)B2 beta+1(t); alpha beta > - 1/2 with suitable conditions on B. When B = 1 we get back the Ramanujan's Master theorem for the Jacobi operator.
引用
收藏
页码:555 / 593
页数:39
相关论文
共 50 条
  • [1] Ramanujan’s master theorem for sturm liouville operator
    K. Jotsaroop
    Sanjoy Pusti
    Monatshefte für Mathematik, 2022, 199 : 555 - 593
  • [2] Ramanujan’s Master Theorem
    Tewodros Amdeberhan
    Olivier Espinosa
    Ivan Gonzalez
    Marshall Harrison
    Victor H. Moll
    Armin Straub
    The Ramanujan Journal, 2012, 29 : 103 - 120
  • [3] Ramanujan's Master Theorem
    Amdeberhan, Tewodros
    Espinosa, Olivier
    Gonzalez, Ivan
    Harrison, Marshall
    Moll, Victor H.
    Straub, Armin
    RAMANUJAN JOURNAL, 2012, 29 (1-3): : 103 - 120
  • [4] A uniqueness theorem for singular Sturm-liouville operator
    Kayalar, Mehmet
    AFRIKA MATEMATIKA, 2023, 34 (03)
  • [5] A uniqueness theorem for singular Sturm-liouville operator
    Mehmet Kayalar
    Afrika Matematika, 2023, 34
  • [6] A Sturm-Liouville theorem for quadratic operator pencils
    Sukhtayev, Alim
    Zumbrun, Kevin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (07) : 3848 - 3879
  • [7] Ambarzumyan-type theorem for the impulsive Sturm-Liouville operator
    Zhang, Ran
    Yang, Chuan-Fu
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (01): : 21 - 25
  • [8] Ramanujan's master theorem for symmetric cones
    Ding, HM
    Gross, KI
    Richards, DSP
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 175 (02) : 447 - 490
  • [9] On the Sturm-Liouville operator
    Sh. Bilal
    Differential Equations, 2012, 48 : 430 - 435
  • [10] On the Sturm-Liouville operator
    Bilal, Sh.
    DIFFERENTIAL EQUATIONS, 2012, 48 (03) : 430 - 435