Highly Sensitive TiO2/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection

被引:78
|
作者
Mostufa, Shahriar [1 ]
Akib, Tarik Bin Abdul [1 ]
Rana, Md Masud [1 ]
Islam, Md Rabiul [2 ]
机构
[1] Rajshahi Univ Engn & Technol, Dept Elect & Elect Engn, Rajshahi 6204, Bangladesh
[2] Univ Wollongong, Sch Elect Comp & Telecommfiunicat Engn, Wollongong, NSW 2522, Australia
来源
BIOSENSORS-BASEL | 2022年 / 12卷 / 08期
关键词
cancer detection; surface plasmon resonance biosensor; FEM; angular interrogation; biosensor; numerical approach; REFRACTIVE-INDEX SENSOR; LABEL-FREE; NUMERICAL APPROACH; SPR BIOSENSOR; BREAST-CANCER; GRAPHENE; CELLS; ENHANCEMENT; PERFORMANCE; DESIGN;
D O I
10.3390/bios12080603
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this article, a hybrid TiO2/Au/graphene layer-based surface plasmon resonance (SPR) sensor with improved sensitivity and capability for cancer detection is presented. The finite element method (FEM) was used for numerical analysis. The proposed SPR biosensor was structured based on the angular analysis of the attenuated total reflection (ATR) method for the detection of various types of cancer using the refractive index component. The resonance angle shifted owing to the increment of normal and cancerous cells' refractive index, which varied between 1.36 and 1.401 for six different types of normal and cancerous cells. According to numerical results, the obtained sensitivities for skin (basal), cervical (HeLa), adrenal gland (PC12), blood (Jurkat), and breast (MCF-7 and MDA-MB-231) cancer cells were 210 deg/RIU, 245.83 deg/RIU, 264.285 deg/RIU, 285.71 deg/RIU, 292.86 deg/RIU, and 278.57 deg/RIU, respectively. Furthermore, the detection accuracy (DA), figure of merits (EOM), and signal-to-noise ratio (SNR) were also obtained, with values of 0.263 deg(-1), 48.02 RIU-1, and 3.84, respectively. Additionally, the distribution of the electric field and the propagation of the magnetic field for resonant and non-resonant conditions of the proposed structure were illustrated. It was found that an enhanced field was exhibited on the surface of the plasmonic material for resonant conditions. We also measured the penetration depth of 180 nm using decayed electric field intensity. Furthermore, the impact of using a TiO2/Au/graphene layer was demonstrated. We further conducted analyses of the effects of the thickness of the gold layer and the effects of additional graphene layers on overall sensitivities for six different types of cancer. The proposed TiO2/Au/graphene layered structure exhibited the highest overall sensitivity in terms of detecting cancerous cells from healthy cells. Moreover, the proposed sensor was numerically analyzed for a wide range of biological solutions (refractive index 1.33-1.41), and the sensor linearity was calculated with a linear regression coefficient (R-2) of 0.9858. Finally, numerical results obtained in this manuscript exhibited high sensitivity in comparison with previously reported studies.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] BaTiO3-Graphene-Affinity Layer-Based Surface Plasmon Resonance (SPR) Biosensor for Pseudomonas Bacterial Detection
    Mudgal, N.
    Yupapin, Preecha
    Ali, Jalil
    Singh, G.
    PLASMONICS, 2020, 15 (05) : 1221 - 1229
  • [2] Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor
    Rahman, M. Saifur
    Anower, Md. Shamim
    Hasan, Md. Rabiul
    Hossain, Md. Biplob
    Haque, Md. Ismail
    OPTICS COMMUNICATIONS, 2017, 396 : 36 - 43
  • [3] Chitosan mediated layer-by-layer assembly based graphene oxide decorated surface plasmon resonance biosensor for highly sensitive detection of β-amyloid
    Nangare, Sopan
    Patil, Pravin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 214 : 568 - 582
  • [4] Surface plasmon resonance biosensor based on graphene layer for the detection of waterborne bacteria
    Daher, Malek G.
    Taya, Sofyan A.
    Colak, Ilhami
    Patel, Shobhit K.
    Olaimat, Melad M.
    Ramahi, Omar
    JOURNAL OF BIOPHOTONICS, 2022, 15 (05)
  • [5] Graphene-Based Surface Plasmon Resonance Biosensor Design Based on Au-MgF2-Au Material for Blood Cancer Detection
    Vithyalakshmi, N.
    Nagabushanam, P.
    Prabhu, Sandeep
    Al-Zahrani, Fahad Ahmed
    PLASMONICS, 2025,
  • [6] Graphene-based Hyperbola-shaped Surface Plasmon Resonance Highly Sensitive Biosensor for Detection of Cancerous Cells
    Bhesaniya, Nimit
    Manvani, Rinku
    Patel, Shobhit K.
    Alzahrani, Ahmad
    Almawgani, Abdulkarem H. M.
    Armghan, Ammar
    PLASMONICS, 2024, 19 (06) : 3273 - 3285
  • [7] Improving the Detection Accuracy of an Ag/Au Bimetallic Surface Plasmon Resonance Biosensor Based on Graphene
    Wang, Qi
    Cao, Shuhua
    Gao, Xufeng
    Chen, Xinrui
    Zhang, Dawei
    CHEMOSENSORS, 2022, 10 (01)
  • [8] Highly sensitive graphene biosensors based on surface plasmon resonance
    Wu, L.
    Chu, H. S.
    Koh, W. S.
    Li, E. P.
    OPTICS EXPRESS, 2010, 18 (14): : 14395 - 14400
  • [9] Highly Sensitive Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance for Six Distinct Types of Cancer Detection
    Chaity, Ananna Chaki
    PLASMONICS, 2024, 19 (04) : 1891 - 1902
  • [10] A Highly Sensitive Dual-Core Photonic Crystal Fiber Based on a Surface Plasmon Resonance Biosensor with Silver-Graphene Layer
    Wang, Famei
    Sun, Zhijie
    Liu, Chao
    Sun, Tao
    Chu, Paul K.
    PLASMONICS, 2017, 12 (06) : 1847 - 1853