High-fidelity universal quantum gates through quantum interference

被引:1
|
作者
Li, Ran [2 ,3 ,4 ]
Gaitan, Frank [1 ,3 ,4 ]
机构
[1] Lab Phys Sci, 8050 Greenmead Dr, College Pk, MD 20740 USA
[2] Kent State Univ, Dept Phys, N Canton, OH 44720 USA
[3] RIKEN, Inst Phys & Chem Res, Adv Sci Inst, Wako, Saitama 351, Japan
[4] Japan Sci & Technol Agcy JST, CREST, Kawaguchi, Saitama 3320012, Japan
来源
关键词
fault-tolerant quantum computing; accuracy threshold; quantum interference; group-symmetrized evolution; non-adiabatic dynamics; PHASE;
D O I
10.1117/12.851211
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Numerical simulation results are presented which suggest that a class of non-adiabatic rapid passage sweeps first realized experimentally in 1991, and which give rise to controllable quantum interference effects observed using NMR in 2003, should be capable of implementing a universal set of quantum gates G(u) that operate with high-fidelity. G(u) consists of the Hadamard and NOT gates, together with variants of the phase, pi/8, and controlled-phase gates. Sweep parameter values are provided which simulations indicate will produce the different gates in G(u), and for each gate, yield an operation with error probability P-e < 10(-4). The simulations suggest that the universal gate set produced by these rapid passage sweeps show promise as possible elements of a fault-tolerant scheme for quantum computing.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] High-Fidelity Universal Quantum Controlled Gates on Electron-Spin Qubits in Quantum Dots Inside Single-Sided Optical Microcavities
    Cao, Cong
    Han, Yu-Hong
    Zhang, Li
    Fan, Ling
    Duan, Yu-Wen
    Zhang, Ru
    ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (10)
  • [22] High-fidelity parallel entangling gates on a neutral-atom quantum computer
    Simon J. Evered
    Dolev Bluvstein
    Marcin Kalinowski
    Sepehr Ebadi
    Tom Manovitz
    Hengyun Zhou
    Sophie H. Li
    Alexandra A. Geim
    Tout T. Wang
    Nishad Maskara
    Harry Levine
    Giulia Semeghini
    Markus Greiner
    Vladan Vuletić
    Mikhail D. Lukin
    Nature, 2023, 622 : 268 - 272
  • [23] High-fidelity parallel entangling gates on a neutral-atom quantum computer
    Evered, Simon J.
    Bluvstein, Dolev
    Kalinowski, Marcin
    Ebadi, Sepehr
    Manovitz, Tom
    Zhou, Hengyun
    Li, Sophie H.
    Geim, Alexandra A.
    Wang, Tout T.
    Maskara, Nishad
    Levine, Harry
    Semeghini, Giulia
    Greiner, Markus
    Vuletic, Vladan
    Lukin, Mikhail D.
    NATURE, 2023, 622 (7982) : 268 - 272
  • [24] Adiabatic and high-fidelity quantum gates with hybrid Rydberg-Rydberg interactions
    Yu, Dongmin
    Wang, Han
    Ma, Dandan
    Zhao, Xingdong
    Qian, Jing
    OPTICS EXPRESS, 2019, 27 (16) : 23080 - 23094
  • [25] High-fidelity n-qubit quantum controlled-not gates on quantum-dot spins
    Xiu, Xiao-Ming
    Chen, Si-Ge
    Zhao, Zi-Lin
    Yuan, Zi-Qing
    Zhang, Xin-Yi
    Dong, Li
    Optics Express, 2024, 32 (21) : 37382 - 37393
  • [26] High-fidelity optical quantum gates based on type-II double quantum dots in a nanowire
    Taherkhani, Masoomeh
    Willatzen, Morten
    Denning, Emil, V
    Protsenko, Igor E.
    Gregersen, Niels
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [27] High-fidelity quantum teleportation and a quantum teleportation network
    Takei, Nobuyuki
    Yonezawa, Hidehiro
    Aoki, Takao
    Furusawa, Akira
    QUANTUM INFORMATION WITH CONTINOUS VARIABLES OF ATOMS AND LIGHT, 2007, : 265 - +
  • [28] Designing high-fidelity multi-qubit gates for semiconductor quantum dots through deep reinforcement learning
    Daraeizadeh, Sahar
    Premaratne, Shavindra P.
    Matsuura, A. Y.
    IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, : 30 - 36
  • [29] Fast high-fidelity entangling gates for spin qubits in Si double quantum dots
    Calderon-Vargas, F. A.
    Barron, George S.
    Deng, Xiu-Hao
    Sigillito, A. J.
    Barnes, Edwin
    Economou, Sophia E.
    PHYSICAL REVIEW B, 2019, 100 (03)
  • [30] Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots
    Tanttu, Tuomo
    Lim, Wee Han
    Huang, Jonathan Y.
    Stuyck, Nard Dumoulin
    Gilbert, Will
    Su, Rocky Y.
    Feng, Mengke
    Cifuentes, Jesus D.
    Seedhouse, Amanda E.
    Seritan, Stefan K.
    Ostrove, Corey I.
    Rudinger, Kenneth M.
    Leon, Ross C. C.
    Huang, Wister
    Escott, Christopher C.
    Itoh, Kohei M.
    Abrosimov, Nikolay V.
    Pohl, Hans-Joachim
    Thewalt, Michael L. W.
    Hudson, Fay E.
    Blume-Kohout, Robin
    Bartlett, Stephen D.
    Morello, Andrea
    Laucht, Arne
    Yang, Chih Hwan
    Saraiva, Andre
    Dzurak, Andrew S.
    NATURE PHYSICS, 2024, : 1804 - 1809