Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots

被引:0
|
作者
Tanttu, Tuomo [1 ,2 ]
Lim, Wee Han [1 ,2 ]
Huang, Jonathan Y. [1 ]
Stuyck, Nard Dumoulin [1 ,2 ]
Gilbert, Will [1 ,2 ]
Su, Rocky Y. [1 ]
Feng, Mengke [1 ,2 ]
Cifuentes, Jesus D. [1 ,2 ]
Seedhouse, Amanda E. [1 ,2 ]
Seritan, Stefan K. [3 ]
Ostrove, Corey I. [4 ]
Rudinger, Kenneth M. [4 ]
Leon, Ross C. C. [1 ,10 ]
Huang, Wister [1 ,11 ]
Escott, Christopher C. [1 ,2 ]
Itoh, Kohei M. [5 ]
Abrosimov, Nikolay V. [6 ]
Pohl, Hans-Joachim [7 ]
Thewalt, Michael L. W. [8 ]
Hudson, Fay E. [1 ,2 ]
Blume-Kohout, Robin [4 ]
Bartlett, Stephen D. [9 ]
Morello, Andrea [1 ]
Laucht, Arne [1 ,2 ]
Yang, Chih Hwan [1 ,2 ]
Saraiva, Andre [1 ,2 ]
Dzurak, Andrew S. [1 ,2 ]
机构
[1] UNSW, Sch Elect Engn & Telecommun, Sydney, NSW, Australia
[2] Diraq, Sydney, NSW, Australia
[3] Sandia Natl Labs, Quantum Performance Lab, Livermore, CA USA
[4] Sandia Natl Labs, Quantum Performance Lab, Albuquerque, NM USA
[5] Keio Univ, Sch Fundamental Sci & Technol, Yokohama 2238522, Japan
[6] Leibniz Inst Kristallzuchtung, Berlin, Germany
[7] VITCON Projectconsult GmbH, Jena, Germany
[8] Simon Fraser Univ, Dept Phys, Vancouver, BC, Canada
[9] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW, Australia
[10] Quantum Mot Technol Ltd, London, England
[11] Swiss Fed Inst Technol, Zurich, Switzerland
基金
澳大利亚研究理事会;
关键词
COMPUTATIONAL ADVANTAGE; PROCESSOR; QUBIT; LOGIC;
D O I
10.1038/s41567-024-02614-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Achieving high-fidelity entangling operations between qubits consistently is essential for the performance of multi-qubit systems. Solid-state platforms are particularly exposed to errors arising from materials-induced variability between qubits, which leads to performance inconsistencies. Here we study the errors in a spin qubit processor, tying them to their physical origins. We use this knowledge to demonstrate consistent and repeatable operation with above 99% fidelity of two-qubit gates in the technologically important silicon metal-oxide-semiconductor quantum dot platform. Analysis of the physical errors and fidelities in multiple devices over extended periods allows us to ensure that we capture the variation and the most common error types. Physical error sources include the slow nuclear and electrical noise on single qubits and contextual noise that depends on the applied control sequence. Furthermore, we investigate the impact of qubit design, feedback systems and robust gate design to inform the design of future scalable, high-fidelity control strategies. Our results highlight both the capabilities and challenges for the scaling-up of silicon spin-based qubits into full-scale quantum processors. For solid-state qubits, the material environment hosts sources of errors that vary in time and space. This systematic analysis of errors affecting high-fidelity two-qubit gates in silicon can inform the design of large-scale quantum computers.
引用
收藏
页码:1804 / 1809
页数:16
相关论文
共 50 条
  • [1] High-fidelity and robust two-qubit gates for quantum-dot spin qubits in silicon
    Huang, Chia-Hsien
    Yang, Chih-Hwan
    Chen, Chien-Chang
    Dzurak, Andrew S.
    Goan, Hsi-Sheng
    PHYSICAL REVIEW A, 2019, 99 (04)
  • [2] Toward the Speed Limit of High-Fidelity Two-Qubit Gates
    Hegde, Swathi S.
    Zhang, Jingfu
    Suter, Dieter
    PHYSICAL REVIEW LETTERS, 2022, 128 (23)
  • [3] Fidelity benchmarks for two-qubit gates in silicon
    W. Huang
    C. H. Yang
    K. W. Chan
    T. Tanttu
    B. Hensen
    R. C. C. Leon
    M. A. Fogarty
    J. C. C. Hwang
    F. E. Hudson
    K. M. Itoh
    A. Morello
    A. Laucht
    A. S. Dzurak
    Nature, 2019, 569 : 532 - 536
  • [4] Fidelity benchmarks for two-qubit gates in silicon
    Huang, W.
    Yang, C. H.
    Chan, K. W.
    Tanttu, T.
    Hensen, B.
    Leon, R. C. C.
    Fogarty, M. A.
    Hwang, J. C. C.
    Hudson, F. E.
    Itoh, K. M.
    Morello, A.
    Laucht, A.
    Dzurak, A. S.
    NATURE, 2019, 569 (7757) : 532 - +
  • [5] Tunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gates
    Yan, Fei
    Krantz, Philip
    Sung, Youngkyu
    Kjaergaard, Morten
    Campbell, Daniel L.
    Orlando, Terry P.
    Gustavsson, Simon
    Oliver, William D.
    PHYSICAL REVIEW APPLIED, 2018, 10 (05):
  • [6] Spin-orbit interaction enabled high-fidelity two-qubit gates
    Qi, Jiaan
    Liu, Zhi-Hai
    Xu, Hongqi
    NEW JOURNAL OF PHYSICS, 2024, 26 (01):
  • [7] High-Fidelity Two-Qubit Gates between Fluxonium Qubits with a Resonator Coupler
    Rosenfeld, Emma L.
    Hann, Connor T.
    Schuster, David I.
    Matheny, Matthew H.
    Clerk, Aashish A.
    PRX Quantum, 2024, 5 (04):
  • [8] High-Fidelity, Frequency-Flexible Two-Qubit Fluxonium Gates with a Transmon Coupler
    Ding, Leon
    Hays, Max
    Sung, Youngkyu
    Kannan, Bharath
    An, Junyoung
    Di Paolo, Agustin
    Karamlou, Amir H.
    Hazard, Thomas M.
    Azar, Kate
    Kim, David K.
    Niedzielski, Bethany M.
    Melville, Alexander
    Schwartz, Mollie E.
    Yoder, Jonilyn L.
    Orlando, Terry P.
    Gustavsson, Simon
    Grover, Jeffrey A.
    Serniak, Kyle
    Oliver, William D.
    PHYSICAL REVIEW X, 2023, 13 (03)
  • [9] Quantum control for high-fidelity multi-qubit gates
    Spiteri, Raymond J.
    Schmidt, Marina
    Ghosh, Joydip
    Zahedinejad, Ehsan
    Sanders, Barry C.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [10] Enhancing the fidelity of two-qubit gates by measurements
    Gefen, Tuvia
    Cohen, Daniel
    Cohen, Itsik
    Retzker, Alex
    PHYSICAL REVIEW A, 2017, 95 (03)