Quantum control for high-fidelity multi-qubit gates

被引:20
|
作者
Spiteri, Raymond J. [1 ]
Schmidt, Marina [1 ]
Ghosh, Joydip [2 ]
Zahedinejad, Ehsan [3 ,4 ]
Sanders, Barry C. [3 ,5 ]
机构
[1] Univ Saskatchewan, Dept Comp Sci, Saskatoon, SK S7N 5C9, Canada
[2] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[3] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[4] 1QB Informat Technol 1QBit, Vancouver, BC V6C 2B5, Canada
[5] Canadian Inst Adv Res, Program Quantum Informat Sci, Toronto, ON M5G 1M1, Canada
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
quantum control; quantum error correction; quantum logic gates; OPTIMIZATION;
D O I
10.1088/1367-2630/aae79a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum control for error correction is critical for the practical use of quantum computers. We address quantum optimal control for single-shot multi-qubit gates by framing it as a feasibility problem for the Hamiltonian model that is then solved with standard global optimization software. Our approach yields faster high-fidelity (>99.99%) single-shot three-qubit-gate control than obtained previously, and it has also enabled us to solve the quantum-control problem for a fast high-fidelity four-qubit gate.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Designing high-fidelity multi-qubit gates for semiconductor quantum dots through deep reinforcement learning
    Daraeizadeh, Sahar
    Premaratne, Shavindra P.
    Matsuura, A. Y.
    [J]. IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, : 30 - 36
  • [2] Designing a DDS-Based SoC for High-Fidelity Multi-Qubit Control
    van Dijk, Jeroen P. G.
    Patra, Bishnu
    Pellerano, Stefano
    Charbon, Edoardo
    Sebastiano, Fabio
    Babaie, Masoud
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (12) : 5380 - 5393
  • [3] Quantum splitting of multi-qubit gates
    Mario Mastriani
    [J]. Optical and Quantum Electronics, 2024, 56
  • [4] Quantum splitting of multi-qubit gates
    Mastriani, Mario
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (03)
  • [5] Tunable multi-qubit quantum phase gates with high fidelity based on graphene wrapped particle
    Ren, Jun
    Zhang, Weixuan
    Yang, Bing
    Zhang, Xiangdong
    [J]. AIP ADVANCES, 2016, 6 (11):
  • [6] Characterization of high-fidelity Raman qubit gates
    Stanchev, Stancho G.
    Vitanov, Nikolay V.
    [J]. PHYSICAL REVIEW A, 2024, 109 (01)
  • [7] High-fidelity gates in a single Josephson qubit
    Lucero, Erik
    Hofheinz, M.
    Ansmann, M.
    Bialczak, Radoslaw C.
    Katz, N.
    Neeley, Matthew
    O'Connell, A. D.
    Wang, H.
    Cleland, A. N.
    Martinis, John M.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (24)
  • [8] Restless Tuneup of High-Fidelity Qubit Gates
    Rol, M. A.
    Bultink, C. C.
    O'Brien, T. E.
    de Jong, S. R.
    Theis, L. S.
    Fu, X.
    Luthi, F.
    Vermeulen, R. F. L.
    de Sterke, J. C.
    Bruno, A.
    Deurloo, D.
    Schouten, R. N.
    Wilhelm, F. K.
    DiCarlo, L.
    [J]. PHYSICAL REVIEW APPLIED, 2017, 7 (04):
  • [9] Compiling quantum algorithms for architectures with multi-qubit gates
    Martinez, Esteban A.
    Monz, Thomas
    Nigg, Daniel
    Schindler, Philipp
    Blatt, Rainer
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [10] Remote Implementation of Multi-qubit Quantum Phase Gates
    Wang, Dong
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (04) : 777 - 785