Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots

被引:0
|
作者
Tanttu, Tuomo [1 ,2 ]
Lim, Wee Han [1 ,2 ]
Huang, Jonathan Y. [1 ]
Stuyck, Nard Dumoulin [1 ,2 ]
Gilbert, Will [1 ,2 ]
Su, Rocky Y. [1 ]
Feng, Mengke [1 ,2 ]
Cifuentes, Jesus D. [1 ,2 ]
Seedhouse, Amanda E. [1 ,2 ]
Seritan, Stefan K. [3 ]
Ostrove, Corey I. [4 ]
Rudinger, Kenneth M. [4 ]
Leon, Ross C. C. [1 ,10 ]
Huang, Wister [1 ,11 ]
Escott, Christopher C. [1 ,2 ]
Itoh, Kohei M. [5 ]
Abrosimov, Nikolay V. [6 ]
Pohl, Hans-Joachim [7 ]
Thewalt, Michael L. W. [8 ]
Hudson, Fay E. [1 ,2 ]
Blume-Kohout, Robin [4 ]
Bartlett, Stephen D. [9 ]
Morello, Andrea [1 ]
Laucht, Arne [1 ,2 ]
Yang, Chih Hwan [1 ,2 ]
Saraiva, Andre [1 ,2 ]
Dzurak, Andrew S. [1 ,2 ]
机构
[1] UNSW, Sch Elect Engn & Telecommun, Sydney, NSW, Australia
[2] Diraq, Sydney, NSW, Australia
[3] Sandia Natl Labs, Quantum Performance Lab, Livermore, CA USA
[4] Sandia Natl Labs, Quantum Performance Lab, Albuquerque, NM USA
[5] Keio Univ, Sch Fundamental Sci & Technol, Yokohama 2238522, Japan
[6] Leibniz Inst Kristallzuchtung, Berlin, Germany
[7] VITCON Projectconsult GmbH, Jena, Germany
[8] Simon Fraser Univ, Dept Phys, Vancouver, BC, Canada
[9] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW, Australia
[10] Quantum Mot Technol Ltd, London, England
[11] Swiss Fed Inst Technol, Zurich, Switzerland
基金
澳大利亚研究理事会;
关键词
COMPUTATIONAL ADVANTAGE; PROCESSOR; QUBIT; LOGIC;
D O I
10.1038/s41567-024-02614-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Achieving high-fidelity entangling operations between qubits consistently is essential for the performance of multi-qubit systems. Solid-state platforms are particularly exposed to errors arising from materials-induced variability between qubits, which leads to performance inconsistencies. Here we study the errors in a spin qubit processor, tying them to their physical origins. We use this knowledge to demonstrate consistent and repeatable operation with above 99% fidelity of two-qubit gates in the technologically important silicon metal-oxide-semiconductor quantum dot platform. Analysis of the physical errors and fidelities in multiple devices over extended periods allows us to ensure that we capture the variation and the most common error types. Physical error sources include the slow nuclear and electrical noise on single qubits and contextual noise that depends on the applied control sequence. Furthermore, we investigate the impact of qubit design, feedback systems and robust gate design to inform the design of future scalable, high-fidelity control strategies. Our results highlight both the capabilities and challenges for the scaling-up of silicon spin-based qubits into full-scale quantum processors. For solid-state qubits, the material environment hosts sources of errors that vary in time and space. This systematic analysis of errors affecting high-fidelity two-qubit gates in silicon can inform the design of large-scale quantum computers.
引用
收藏
页码:1804 / 1809
页数:16
相关论文
共 50 条
  • [31] Optimal quantum circuits for general two-qubit gates
    Vatan, F
    Williams, C
    PHYSICAL REVIEW A, 2004, 69 (03): : 032315 - 1
  • [32] Implementing two-qubit gates at the quantum speed limit
    Howard, Joel
    Lidiak, Alexander
    Jameson, Casey
    Basyildiz, Bora
    Clark, Kyle
    Zhao, Tongyu
    Bal, Mustafa
    Long, Junling
    Pappas, David P.
    Singh, Meenakshi
    Gong, Zhexuan
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [33] Phase-controlled two-qubit quantum gates
    Malinovsky, Vladimir S.
    Sola, Ignacio R.
    Vala, Jiri
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [34] Two-qubit quantum gates with minimal pulse sequences
    Sola, Ignacio R.
    Shin, Seokmin
    Chang, Bo Y.
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [35] Fidelity deviation in quantum teleportation with a two-qubit state
    Ghosal, Arkaprabha
    Das, Debarshi
    Roy, Saptarshi
    Bandyopadhyay, Somshubhro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (14)
  • [36] Time dependent quantum simulations of two-qubit gates based on donor states in silicon
    Kerridge, A.
    Savory, S.
    Harker, A. H.
    Stoneham, A. M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (21) : S767 - S776
  • [37] High-fidelity n-qubit quantum controlled-not gates on quantum-dot spins
    Xiu, Xiao-Ming
    Chen, Si-Ge
    Zhao, Zi-Lin
    Yuan, Zi-Qing
    Zhang, Xin-Yi
    Dong, Li
    Optics Express, 2024, 32 (21) : 37382 - 37393
  • [38] High-fidelity quantum gates in the presence of dispersion
    Khani, B.
    Merkel, S. T.
    Motzoi, F.
    Gambetta, Jay M.
    Wilhelm, F. K.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [39] Measuring two-qubit gates
    White, Andrew G.
    Gilchrist, Alexei
    Pryde, Geoffrey J.
    O'Brien, Jeremy L.
    Bremner, Michael J.
    Langford, Nathan K.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2007, 24 (02) : 172 - 183
  • [40] Composite two-qubit gates
    Ivanov, Svetoslav S.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW A, 2015, 92 (02):