Disk-shaped magnetic particles for cancer therapy

被引:41
|
作者
Goiriena-Goikoetxea, M. [1 ,2 ]
Munoz, D. [3 ]
Orue, I. [4 ]
Fernandez-Gubieda, M. L. [2 ,5 ]
Bokor, J. [1 ,6 ]
Muela, A. [3 ,5 ]
Garcia-Arribas, A. [2 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Basque Country, Dept Elect & Elect, Leioa 48940, Spain
[3] Univ Basque Country, Dept Immunol Microbiol & Parasitol, Leioa 48940, Spain
[4] Univ Basque Country, SGIKER Magnet Measurements, Leioa 48940, Spain
[5] Basque Ctr Mat Applicat & Nanostruct BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
[6] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
IRON-OXIDE NANOPARTICLES; SURFACE MODIFICATION; OXIDATIVE STRESS; HYPERTHERMIA; STABILIZATION; FABRICATION; DISPERSION; APOPTOSIS; DELIVERY;
D O I
10.1063/1.5123716
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic disks are a new generation of nanoparticles with outstanding properties to face biomedical challenges as a cancer treatment. The key features of their suitability are the ability of rotation (torque), the high dispersion capability, and the easy manipulation under low magnetic fields. These properties make disk-shaped particles ideal magnetomechanical actuators to damage cancer cell integrity, deliver antitumor drugs, generate heat (magnetic hyperthermia), or separate cancer cells for early detection. Since the experimental demonstration of the capability of destroying brain cancer cells by the force exerted from rotating Ni80Fe20 microdisks, important advances have been reported on disks composed of different magnetic materials and dimensions. Here, we present the evolution of a decade-old research field by combining the discussion of in vitro experiments available in the literature with our most recent results. More importantly, we compare the torque and dispersion capability of each type of magnetic disk in order to promote the investigation toward the most efficient magnetomechanical actuator to destroy cancer cells.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] FLEXIBLE MANUFACTURING SYSTEM FOR DISK-SHAPED COMPONENTS
    HORL, A
    WERKSTATTSTECHNIK ZEITSCHRIFT FUR INDUSTRIELLE FERTIGUNG, 1982, 72 (01): : 9 - 13
  • [42] INVESTIGATIONS ON A DISK-SHAPED CANAL RAY TUBE
    SPATH, W
    VAKUUM-TECHNIK, 1969, 18 (01): : 8 - &
  • [43] Electrical conductivity measurements on disk-shaped samples
    de Boor, J.
    Zabrocki, K.
    Frohring, J.
    Mueller, E.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (07):
  • [44] COMPUTING PUSH PLANS FOR DISK-SHAPED ROBOTS
    De Berg, Mark
    Gerrits, Dirk H. P.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2013, 23 (01) : 29 - 48
  • [45] Corrosion current densities at a disk-shaped inclusion
    Roland L. Alfred
    Jan C. Myland
    Keith B. Oldham
    Journal of Solid State Electrochemistry, 2002, 6 : 172 - 182
  • [46] Optimization analysis of a disk-shaped heat pipe
    Zhu, N
    Vafai, K
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1996, 10 (01) : 179 - 182
  • [47] DISK-SHAPED ELECTRON BUNCH IN AN ELECTROSTATIC FIELD
    MELNIKOV, SL
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1967, 12 (10): : 1650 - &
  • [48] NONEQUILIBRIUM PHENOMENA IN A DISK-SHAPED MAGNETOHYDRODYNAMIC GENERATOR
    VEEFKIND, A
    ENERGY CONVERSION, 1975, 15 (1-2): : 51 - &
  • [49] Monodisperse disk-shaped micelles of perfluorooctadecanoic acid
    Thünemann, AF
    Schnablegger, H
    LANGMUIR, 1999, 15 (16) : 5426 - 5428
  • [50] Disk-shaped electronic bubbles in gaseous helium
    Shikin, VB
    JETP LETTERS, 2004, 80 (06) : 417 - 420