Disk-shaped magnetic particles for cancer therapy

被引:41
|
作者
Goiriena-Goikoetxea, M. [1 ,2 ]
Munoz, D. [3 ]
Orue, I. [4 ]
Fernandez-Gubieda, M. L. [2 ,5 ]
Bokor, J. [1 ,6 ]
Muela, A. [3 ,5 ]
Garcia-Arribas, A. [2 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Basque Country, Dept Elect & Elect, Leioa 48940, Spain
[3] Univ Basque Country, Dept Immunol Microbiol & Parasitol, Leioa 48940, Spain
[4] Univ Basque Country, SGIKER Magnet Measurements, Leioa 48940, Spain
[5] Basque Ctr Mat Applicat & Nanostruct BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
[6] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
IRON-OXIDE NANOPARTICLES; SURFACE MODIFICATION; OXIDATIVE STRESS; HYPERTHERMIA; STABILIZATION; FABRICATION; DISPERSION; APOPTOSIS; DELIVERY;
D O I
10.1063/1.5123716
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic disks are a new generation of nanoparticles with outstanding properties to face biomedical challenges as a cancer treatment. The key features of their suitability are the ability of rotation (torque), the high dispersion capability, and the easy manipulation under low magnetic fields. These properties make disk-shaped particles ideal magnetomechanical actuators to damage cancer cell integrity, deliver antitumor drugs, generate heat (magnetic hyperthermia), or separate cancer cells for early detection. Since the experimental demonstration of the capability of destroying brain cancer cells by the force exerted from rotating Ni80Fe20 microdisks, important advances have been reported on disks composed of different magnetic materials and dimensions. Here, we present the evolution of a decade-old research field by combining the discussion of in vitro experiments available in the literature with our most recent results. More importantly, we compare the torque and dispersion capability of each type of magnetic disk in order to promote the investigation toward the most efficient magnetomechanical actuator to destroy cancer cells.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] STABILITY THRESHOLDS OF A DISK-SHAPED MIGMA
    WONG, HV
    ROSENBLUTH, MN
    BERK, HL
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (04): : 826 - 839
  • [22] Operating experience with a disk-shaped crystallizer
    A. V. Vishnevskii
    A. G. Vikhman
    S. I. Nikolaev
    N. N. Vakhromov
    A. Yu. Bogdanov
    G. G. Vasil’ev
    M. V. Zheleznov
    V. O. Shakhovskii
    D. Yu. Bychkov
    S. S. Kruglov
    Chemistry and Technology of Fuels and Oils, 2011, 47 : 346 - 350
  • [23] The disk-shaped external semilunar cartilage
    McFarland, BL
    BRITISH MEDICAL JOURNAL, 1936, 1936 : 819 - 819
  • [24] The disk-shaped external semilunar cartilage
    Fisher, AGT
    BRITISH MEDICAL JOURNAL, 1936, 1936 : 688 - 690
  • [25] CRITICAL STATE IN DISK-SHAPED SUPERCONDUCTORS
    DAUMLING, M
    LARBALESTIER, DC
    PHYSICAL REVIEW B, 1989, 40 (13): : 9350 - 9353
  • [26] Skyrmion pinning by disk-shaped defects
    Gong, X.
    Jing, K. Y.
    Lu, J.
    Wang, X. R.
    PHYSICAL REVIEW B, 2022, 105 (09)
  • [27] Geographical distribution of disk-shaped puzzles
    Nougier, L. R.
    BULLETIN DE LA SOCIETE PREHISTORIQUE FRANCAISE, 1949, 46 (11-12): : 428 - 431
  • [28] Swelling Dynamics of a Disk-Shaped Gel
    Man, Xingkun
    Doi, Masao
    MACROMOLECULES, 2021, 54 (10) : 4626 - 4632
  • [29] OPERATING EXPERIENCE WITH A DISK-SHAPED CRYSTALLIZER
    Vishnevskii, A. V.
    Vikhman, A. G.
    Nikolaev, S. I.
    Vakhromov, N. N.
    Bogdanov, A. Yu
    Vasil'ev, G. G.
    Zheleznov, M. V.
    Shakhovskii, V. O.
    Bychkov, D. Yu
    Kruglov, S. S.
    CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS, 2011, 47 (05) : 346 - 350
  • [30] INTERNAL BRIGHTNESS OF DISK-SHAPED SAMPLES
    KAUFMANN, WF
    HARTMANN, KM
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1988, 1 (03) : 337 - 360