friendly labeling;
cordiality;
friendly index set;
total graph;
tree;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G be a graph with vertex set V(G) and edge set E(G), and let A be an abelian group. A vertex labeling f: V(G) -> A induces an edge labeling f* : E(G) -> A defined by f*(xy) = f(x) + f(y), for each edge Xy epsilon E(G). For i epsilon A, let v(f)(i) = card {v epsilon V(G) : f(v) = i} and e(f)(i) = card {e epsilon E(G) : f*(e) = i}. Let c(f) = {vertical bar e(f)(i) - e(f)(i)vertical bar : (i, j) epsilon A x A}. A labeling f of a graph G is said to be A-friendly if vertical bar v(f)(i) - v(f)(j)vertical bar <= 1 for all (i, j) epsilon A x A. If c(f) is a (0, 1)-matrix for an A-friendly labeling f, then f is said to be A-cordial. When A = Z(2), the friendly index set of the graph G, FI(G), is defined as {vertical bar e(f)(0) - e(f) (1)vertical bar : the vertex labeling f is Z(2)-friendly}. In this paper the friendly index sets of the total graphs of some trees are completely determined.
机构:
GoStudent, Ernst Melchior Gasse 20, A-1020 Vienna, AustriaGoStudent, Ernst Melchior Gasse 20, A-1020 Vienna, Austria
Kovse, Matjaz
Misanantenaina, Valisoa Razanajatovo
论文数: 0引用数: 0
h-index: 0
机构:
Stellenbosch Univ, Dept Logist, Private Bag X1, ZA-7602 Matieland, South AfricaGoStudent, Ernst Melchior Gasse 20, A-1020 Vienna, Austria
Misanantenaina, Valisoa Razanajatovo
Wagner, Stephan
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Math, Box 480, S-75106 Uppsala, Sweden
Stellenbosch Univ, Dept Math Sci, Private Bag X1, ZA-7602 Matieland, South AfricaGoStudent, Ernst Melchior Gasse 20, A-1020 Vienna, Austria
机构:
National Research University Higher School of Economics, Nizhny NovgorodBranch, Nizhny Novgorod
Lobachevsky State University of Nizhny Novgorod, Nizhny NovgorodNational Research University Higher School of Economics, Nizhny NovgorodBranch, Nizhny Novgorod
机构:
Univ Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South AfricaUniv Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa
Henning, Michael A.
Peterin, Iztok
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maribor, Fac Elect Engn & Comp Sci, Koroska 46, Maribor 2000, Slovenia
Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, SloveniaUniv Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa