On friendly index sets of total graphs of trees

被引:0
|
作者
Lee, Sin-Min [1 ]
Ng, Ho Kuen
机构
[1] San Jose State Univ, Dept Comp Sci, San Jose, CA 95192 USA
[2] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
关键词
friendly labeling; cordiality; friendly index set; total graph; tree;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V(G) and edge set E(G), and let A be an abelian group. A vertex labeling f: V(G) -> A induces an edge labeling f* : E(G) -> A defined by f*(xy) = f(x) + f(y), for each edge Xy epsilon E(G). For i epsilon A, let v(f)(i) = card {v epsilon V(G) : f(v) = i} and e(f)(i) = card {e epsilon E(G) : f*(e) = i}. Let c(f) = {vertical bar e(f)(i) - e(f)(i)vertical bar : (i, j) epsilon A x A}. A labeling f of a graph G is said to be A-friendly if vertical bar v(f)(i) - v(f)(j)vertical bar <= 1 for all (i, j) epsilon A x A. If c(f) is a (0, 1)-matrix for an A-friendly labeling f, then f is said to be A-cordial. When A = Z(2), the friendly index set of the graph G, FI(G), is defined as {vertical bar e(f)(0) - e(f) (1)vertical bar : the vertex labeling f is Z(2)-friendly}. In this paper the friendly index sets of the total graphs of some trees are completely determined.
引用
收藏
页码:81 / 95
页数:15
相关论文
共 50 条
  • [31] The eccentric adjacency index of unicyclic graphs and trees
    Akhter, Shehnaz
    Farooq, Rashid
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (01)
  • [32] Steiner Wiener index and line graphs of trees
    Kovse, Matjaz
    Misanantenaina, Valisoa Razanajatovo
    Wagner, Stephan
    DISCRETE MATHEMATICS LETTERS, 2022, 9 : 86 - 91
  • [33] Trees, quadratic line graphs and the Wiener index
    Dobrynin, AA
    Mel'nikov, LS
    CROATICA CHEMICA ACTA, 2004, 77 (03) : 477 - 480
  • [35] On the Number of Minimum Total Dominating Sets in Trees
    Taletskii D.S.
    Journal of Applied and Industrial Mathematics, 2023, 17 (01) : 213 - 224
  • [36] Total Dominating Sets in Maximal Outerplanar Graphs
    Magdalena Lemańska
    Rita Zuazua
    Paweł Żyliński
    Graphs and Combinatorics, 2017, 33 : 991 - 998
  • [37] Linear Separation of Total Dominating Sets in Graphs
    Chiarelli, Nina
    Milanic, Martin
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2013, 2013, 8165 : 165 - 176
  • [38] A characterization of graphs with disjoint total dominating sets
    Henning, Michael A.
    Peterin, Iztok
    ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (02) : 359 - 375
  • [39] ACYCLIC TOTAL DOMINATING SETS IN CUBIC GRAPHS
    Goddard, Wayne
    Henning, Michael A.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (01) : 73 - 84
  • [40] Minimal total open monophonic sets in graphs
    Santhakumaran, A. P.
    Mahendran, M.
    Raj, F. Simon
    Ganesamoorthy, K.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS- COMPUTER SYSTEMS THEORY, 2022, 7 (01) : 6 - 15