On friendly index sets of total graphs of trees

被引:0
|
作者
Lee, Sin-Min [1 ]
Ng, Ho Kuen
机构
[1] San Jose State Univ, Dept Comp Sci, San Jose, CA 95192 USA
[2] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
关键词
friendly labeling; cordiality; friendly index set; total graph; tree;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V(G) and edge set E(G), and let A be an abelian group. A vertex labeling f: V(G) -> A induces an edge labeling f* : E(G) -> A defined by f*(xy) = f(x) + f(y), for each edge Xy epsilon E(G). For i epsilon A, let v(f)(i) = card {v epsilon V(G) : f(v) = i} and e(f)(i) = card {e epsilon E(G) : f*(e) = i}. Let c(f) = {vertical bar e(f)(i) - e(f)(i)vertical bar : (i, j) epsilon A x A}. A labeling f of a graph G is said to be A-friendly if vertical bar v(f)(i) - v(f)(j)vertical bar <= 1 for all (i, j) epsilon A x A. If c(f) is a (0, 1)-matrix for an A-friendly labeling f, then f is said to be A-cordial. When A = Z(2), the friendly index set of the graph G, FI(G), is defined as {vertical bar e(f)(0) - e(f) (1)vertical bar : the vertex labeling f is Z(2)-friendly}. In this paper the friendly index sets of the total graphs of some trees are completely determined.
引用
收藏
页码:81 / 95
页数:15
相关论文
共 50 条
  • [21] The Sanskruti index of trees and unicyclic graphs
    Deng, Fei
    Jiang, Huiqin
    Liu, Jia-Bao
    Poklukar, Darja Rupnik
    Shao, Zehui
    Wu, Pu
    Zerovnik, Janez
    OPEN CHEMISTRY, 2019, 17 (01): : 448 - 455
  • [22] BALANCED INDEX SETS OF GRAPHS AND SEMIGRAPHS
    Prabhu, Nagarjun
    Nayak, C. devadas
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2024, 30 (03) : 468 - 485
  • [23] Weak total resolving sets in graphs
    Javaid, I.
    Salman, M.
    Murtaza, M.
    Iftikhar, F.
    Imran, M.
    UTILITAS MATHEMATICA, 2019, 110 : 11 - 26
  • [24] INTERIOR TOTAL DOMINATING SETS IN GRAPHS
    Pacardo, Shiela Mae B.
    Rara, Helen M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2018, 19 (04): : 373 - 390
  • [25] Graphs with few total dominating sets
    Krzywkowski, Marcin
    Wagner, Stephan
    DISCRETE MATHEMATICS, 2018, 341 (04) : 997 - 1009
  • [26] PRODUCT-CORDIAL INDEX AND FRIENDLY INDEX OF REGULAR GRAPHS
    Shiu, W. C.
    Kwong, H.
    TRANSACTIONS ON COMBINATORICS, 2012, 1 (01) : 15 - 20
  • [27] On friendly index sets of cycles with parallel chords
    Lee, Sin-Min
    Ng, Ho Kuen
    ARS COMBINATORIA, 2010, 97A : 253 - 267
  • [28] On friendly index sets of k-galaxies
    Lee, S-M
    Low, Richard M.
    Ng, H. K.
    Wang, Y-C
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2019, 7 (01) : 1 - 10
  • [29] ON THE MODIFIED RANDIC INDEX OF TREES, UNICYCLIC GRAPHS AND BICYCLIC GRAPHS
    Li, Jianping
    Zhou, Bo
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) : 415 - 427
  • [30] Independent Sets of Random Trees and Sparse Random Graphs
    Heilman, Steven
    JOURNAL OF GRAPH THEORY, 2025,