Periodic orbits of a generalized Henon-Heiles system

被引:3
|
作者
alvarez-Ramirez, M. [1 ]
Garcia-Saldana, J. D. [2 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Alonso Ribera 2850, Concepcion, Chile
关键词
Hamiltonian system; periodic orbits; averaging theory; MANIFOLDS;
D O I
10.1088/1751-8121/ab661f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we apply the Lyapunov center theorem, Weinstein-Moser theorem and the averaging theory of second order to prove the existence of periodic orbits of a one-parameter generalized Henon-Heiles Hamiltonian system which includes the classical one. We show that this system has at least two-families of stable periodic orbits for energy level h > 0.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] ON THE INTEGRABILITY OF THE HENON-HEILES SYSTEM
    GRAMMATICOS, B
    DORIZZI, B
    PADJEN, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1982, 294 (09): : 541 - 544
  • [22] Periodic Solutions, Stability and Non-Integrability in a Generalized Henon-Heiles Hamiltonian System
    Carrasco, Dante
    Vidal, Claudio
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (02) : 199 - 213
  • [23] Integrability of the Henon-Heiles system
    Smirnov, RG
    [J]. APPLIED MATHEMATICS LETTERS, 1998, 11 (03) : 71 - 74
  • [24] An extended Henon-Heiles system
    Hone, A. N. W.
    Novikov, V.
    Verhoeven, C.
    [J]. PHYSICS LETTERS A, 2008, 372 (09) : 1440 - 1444
  • [25] Basins of convergence of equilibrium points in the generalized Henon-Heiles system
    Zotos, Euaggelos E.
    Riano-Doncel, A.
    Dubeibe, F. L.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 99 : 218 - 228
  • [26] BIFURCATIONS OF INVARIANT-MANIFOLDS IN THE GENERALIZED HENON-HEILES SYSTEM
    GAVRILOV, L
    [J]. PHYSICA D, 1989, 34 (1-2): : 223 - 239
  • [27] Determining the Properties of the Basins of Convergence in the Generalized Henon-Heiles System
    Zotos, Euaggelos E.
    Suraj, Md. Sanam
    Mittal, Amit
    Aggarwal, Rajiv
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (01):
  • [28] Quantization of non-integrable Hamiltonian by periodic orbits: an example of the study on chaotic Henon-Heiles system
    Wang, PJ
    Wu, GZ
    [J]. ACTA PHYSICA SINICA, 2005, 54 (06) : 2545 - 2551
  • [29] ULTRASONIC SOLITONS AND THE HENON-HEILES SYSTEM
    GAIDIDEI, YB
    EILBECK, JC
    CHRISTIANSEN, PL
    ENOLSKY, VZ
    [J]. UKRAINSKII FIZICHESKII ZHURNAL, 1992, 37 (12): : 1778 - 1785
  • [30] HAMILTONIAN SYMMETRIES OF THE HENON-HEILES SYSTEM
    FORDY, AP
    [J]. PHYSICS LETTERS A, 1983, 97 (1-2) : 21 - 23