Periodic Solutions, Stability and Non-Integrability in a Generalized Henon-Heiles Hamiltonian System

被引:4
|
作者
Carrasco, Dante [1 ]
Vidal, Claudio [1 ]
机构
[1] Univ Bio Bio, Dept Math, Concepcion, Chile
关键词
Generalized Henon-Heiles Hamiltonian; periodic orbits; integrability; averaging theory; ORBITS; INTEGRABILITY; INTEGRALS; THEOREM; MOTION;
D O I
10.1080/14029251.2013.805567
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Hamiltonian function defined by the cubic polynomial H - 1/2 (p(x)(2) + p(y)(2))+ 1/2 (x(2) + y(2))+ A/3x(3) + Bxy(2) + Dx(2)y, where A, B, D is an element of R are parameters and so H is an extension of the well known Henon-Heiles problem. Our main contribution for D not equal 0, A + B not equal 0 and other technical restrictions are in three aspects: existence of periodic solutions, stability and instability of these periodic solutions and the problem of non-integrability of the system associated to H. Initially we give sufficient conditions on the three parameters of these generalized Henon-Heiles systems, which guarantees that at any positive energy level, the Hamiltonian system has periodic orbits. After that, we prove that its stability changes with the values of the parameters. Finally, we show that the generalized Henon-Heiles systems cannot have any second first integral of class l(1) in the sense of Liouville-Arnol'd. In fact, the parameters where our problem is not integrable in the sense of Liouville-Arnol'd are the same where the periodic orbits were analytically found through averaging theory.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 50 条
  • [1] Non-integrability of Henon-Heiles system
    Li, Wenlei
    Shi, Shaoyun
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2011, 109 (01): : 1 - 12
  • [2] Periodic orbits and non-integrability of Henon-Heiles systems
    Llibre, Jaume
    Jimenez-Lara, Lidia
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (20)
  • [3] Non-integrability of a three-dimensional generalized Henon-Heiles system
    Christov, Ognyan
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (10):
  • [4] Periodic Solutions, Stability and Non-Integrability in a Generalized Hénon-Heiles Hamiltonian System
    Dante Carrasco
    Claudio Vidal
    [J]. Journal of Nonlinear Mathematical Physics, 2013, 20 : 199 - 213
  • [5] PROOF OF NON-INTEGRABILITY FOR THE HENON-HEILES HAMILTONIAN NEAR AN EXCEPTIONAL INTEGRABLE CASE
    HOLMES, P
    [J]. PHYSICA D, 1982, 5 (2-3): : 335 - 347
  • [6] ON THE INTEGRABILITY OF THE HENON-HEILES SYSTEM
    GRAMMATICOS, B
    DORIZZI, B
    PADJEN, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1982, 294 (09): : 541 - 544
  • [7] Integrability of the Henon-Heiles system
    Smirnov, RG
    [J]. APPLIED MATHEMATICS LETTERS, 1998, 11 (03) : 71 - 74
  • [8] Integration of a generalized Henon-Heiles Hamiltonian
    Verhoeven, C
    Musette, M
    Conte, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (04) : 1906 - 1915
  • [9] Liouvillian integrability of the three-dimensional generalized Henon-Heiles Hamiltonian
    El Fakkousy, Idriss
    Kharbach, Jaouad
    Chatar, Walid
    Benkhali, Mohamed
    Rezzouk, Abdellah
    Ouazzani-Jamil, Mohammed
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (07):
  • [10] Periodic orbits of a generalized Henon-Heiles system
    alvarez-Ramirez, M.
    Garcia-Saldana, J. D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)