Quantitative Analysis of Boundary Layers in Periodic Homogenization

被引:21
|
作者
Armstrong, Scott [1 ]
Kuusi, Tuomo [2 ]
Mourrat, Jean-Christophe [3 ]
Prange, Christophe [4 ]
机构
[1] PSL Res Univ, Univ Paris Dauphine, CEREMADE, CNRS,UMR 7534, F-75016 Paris, France
[2] Aalto Univ, Dept Math & Syst Anal, Espoo, Finland
[3] Ecole Normale Super Lyon, CNRS, UMPA, UMR 5669, Lyon, France
[4] Univ Bordeaux, CNRS, UMR 5251, IMB, Bordeaux, France
基金
芬兰科学院;
关键词
FOURIER-ANALYSIS; CORRECTORS; DOMAINS; GREEN;
D O I
10.1007/s00205-017-1142-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the homogenized boundary condition.
引用
收藏
页码:695 / 741
页数:47
相关论文
共 50 条