Quantitative estimates in almost periodic homogenization of parabolic systems

被引:0
|
作者
Geng, Jun [1 ]
Shi, Bojing [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
CONVERGENCE-RATES; STOCHASTIC HOMOGENIZATION; ELLIPTIC PROBLEMS; GREENS MATRICES; CORRECTORS;
D O I
10.1007/s00526-024-02881-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of second-order parabolic operators partial derivative t+L epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _t+\mathcal {L}_\varepsilon $$\end{document} in divergence form with rapidly oscillating, time-dependent and almost-periodic coefficients. We establish uniform interior and boundary H & ouml;lder and Lipschitz estimates as well as convergence rate. The estimates of fundamental solution and Green's function are also established. In contrast to periodic case, the main difficulty is that the corrector equation (partial derivative s+L1)(chi j beta)=-L1(Pj beta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (\partial _s+\mathcal {L}_1)(\chi <^>\beta _{j})=-\mathcal {L}_1(P<^>\beta _j) $$\end{document} in Rd+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>{d+1}$$\end{document} may not be solvable in the almost periodic setting for linear functions P(y) and partial derivative t chi S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _t \chi _S$$\end{document} may not in B2(Rd+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B<^>2(\mathbb {R}<^>{d+1})$$\end{document}. Our results are new even in the case of time-independent coefficients.
引用
收藏
页数:57
相关论文
共 50 条