Estimates of homogenization for a parabolic equation with periodic coefficients

被引:0
|
作者
V. V. Zhikov
S. E. Pastukhova
机构
[1] Vladimir State Pedagogical Institute,Department of Mathematics
关键词
Mathematical Physic; Parabolic Equation; Operator Estimate; Zero Approximation; Homogenization Theory;
D O I
暂无
中图分类号
学科分类号
摘要
The asymptotic behavior of the operator exponent related to the Cauchy problem for a parabolic equation with periodic coefficients is studied either under the reduction of the periodicity cell or for large times. Estimates for the closeness of the operator exponentials (the original and the limit) with respect to the L2-operator norm and the related H1-estimates are obtained under minimal assumptions concerning the smoothness of the heat matrix and of the initial data.
引用
收藏
页码:224 / 237
页数:13
相关论文
共 50 条
  • [1] Estimates of homogenization for a parabolic equation with periodic coefficients
    Zhikov, V. V.
    Pastukhova, S. E.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2006, 13 (02) : 224 - 237
  • [2] Estimates in homogenization of parabolic equations with locally periodic coefficients
    Pastukhova, Svetlana
    [J]. ASYMPTOTIC ANALYSIS, 2010, 66 (3-4) : 207 - 228
  • [3] Homogenization of the parabolic equation with periodic coefficients at the edge of a spectral gap
    Akhmatova, A. R.
    Aksenova, E. S.
    Sloushch, V. A.
    Suslina, T. A.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (03) : 523 - 555
  • [4] HOMOGENIZATION OF THE CAUCHY PROBLEM FOR PARABOLIC SYSTEMS WITH PERIODIC COEFFICIENTS
    Meshkova, Yu. M.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (06) : 981 - 1019
  • [5] Estimates of locally periodic and reiterated homogenization for parabolic equations
    S. E. Pastukhova
    R. N. Tikhomirov
    [J]. Doklady Mathematics, 2009, 80 : 674 - 678
  • [6] Estimates of locally periodic and reiterated homogenization for parabolic equations
    Pastukhova, S. E.
    Tikhomirov, R. N.
    [J]. DOKLADY MATHEMATICS, 2009, 80 (02) : 674 - 678
  • [7] Homogenization and correctors for the wave equation with periodic coefficients
    Casado-Diaz, Juan
    Couce-Calvo, Julio
    Maestre, Faustino
    Martin Gomez, Jose D.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (07): : 1343 - 1388
  • [8] Homogenization Error Estimates for a Periodic Beltrami Equation
    Sirazhudinov, M. M.
    Tikhomirova, S. V.
    [J]. DIFFERENTIAL EQUATIONS, 2020, 56 (12) : 1604 - 1612
  • [9] Homogenization Error Estimates for a Periodic Beltrami Equation
    M. M. Sirazhudinov
    S. V. Tikhomirova
    [J]. Differential Equations, 2020, 56 : 1604 - 1612
  • [10] Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients
    Yu. M. Meshkova
    T. A. Suslina
    [J]. Functional Analysis and Its Applications, 2017, 51 : 230 - 235