Quantitative estimates in almost periodic homogenization of parabolic systems

被引:0
|
作者
Geng, Jun [1 ]
Shi, Bojing [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
CONVERGENCE-RATES; STOCHASTIC HOMOGENIZATION; ELLIPTIC PROBLEMS; GREENS MATRICES; CORRECTORS;
D O I
10.1007/s00526-024-02881-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of second-order parabolic operators partial derivative t+L epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _t+\mathcal {L}_\varepsilon $$\end{document} in divergence form with rapidly oscillating, time-dependent and almost-periodic coefficients. We establish uniform interior and boundary H & ouml;lder and Lipschitz estimates as well as convergence rate. The estimates of fundamental solution and Green's function are also established. In contrast to periodic case, the main difficulty is that the corrector equation (partial derivative s+L1)(chi j beta)=-L1(Pj beta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (\partial _s+\mathcal {L}_1)(\chi <^>\beta _{j})=-\mathcal {L}_1(P<^>\beta _j) $$\end{document} in Rd+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>{d+1}$$\end{document} may not be solvable in the almost periodic setting for linear functions P(y) and partial derivative t chi S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _t \chi _S$$\end{document} may not in B2(Rd+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B<^>2(\mathbb {R}<^>{d+1})$$\end{document}. Our results are new even in the case of time-independent coefficients.
引用
收藏
页数:57
相关论文
共 50 条
  • [21] Bounded Correctors in Almost Periodic Homogenization
    Scott Armstrong
    Antoine Gloria
    Tuomo Kuusi
    Archive for Rational Mechanics and Analysis, 2016, 222 : 393 - 426
  • [22] Bounded Correctors in Almost Periodic Homogenization
    Armstrong, Scott
    Gloria, Antoine
    Kuusi, Tuomo
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (01) : 393 - 426
  • [23] Homogenization of initial boundary value problems for parabolic systems with periodic coefficients
    Meshkova, Yu. M.
    Suslina, T. A.
    APPLICABLE ANALYSIS, 2016, 95 (08) : 1736 - 1775
  • [24] Well-posedness and exponential stability of periodic and almost periodic solutions for parabolic–parabolic Keller–Segel systems
    Nguyen Thi Van
    Le The Sac
    Pham Truong Xuan
    Boletín de la Sociedad Matemática Mexicana, 2025, 31 (2)
  • [25] Quantitative estimates in reiterated homogenization
    Niu, Weisheng
    Shen, Zhongwei
    Xu, Yao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (11)
  • [26] Estimates of eigenvalues and eigenfunctions in periodic homogenization
    Kenig, Carlos E.
    Lin, Fanghua
    Shen, Zhongwei
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (05) : 1901 - 1925
  • [27] A GENERAL HOMOGENIZATION RESULT FOR ALMOST PERIODIC FUNCTIONALS
    DE ARCANGELIS, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (02) : 358 - 380
  • [28] HOMOGENIZATION OF ALMOST PERIODIC MONOTONE-OPERATORS
    BRAIDES, A
    PIAT, VC
    DEFRANCESCHI, A
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (04): : 399 - 432
  • [29] ON THE HOMOGENIZATION OF THE ELASTICITY SYSTEM WITH ALMOST PERIODIC COEFFICIENTS
    OLEINIK, OA
    ZHIKOV, VV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1982, (06): : 62 - 70
  • [30] Rate of convergence for correctors in almost periodic homogenization
    Bondarenko, A
    Bouchitte, G
    Mascarenhas, L
    Mahadevan, R
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (02) : 503 - 514