Isometric dilations of non-commuting finite rank n-tuples

被引:40
|
作者
Davidson, KR [1 ]
Kribs, DW
Shpigel, ME
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Mitra Imaging Inc, Waterloo, ON N2L 1W3, Canada
关键词
D O I
10.4153/CJM-2001-022-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A contractive n-tuple A = (A(1),...,A(n)) has a minimal joint isometric dilation S = (S-1,...,S-n) where the Si's are isometries with pairwise orthogonal ranges. This determines a representation of the Cuntz-Toeplitz algebra. When A acts on a finite dimensional space, the wot-closed nonself-adjoint algebra G generated by S is completely described in terms of the properties of A. This provides complete unitary invariants for the corresponding representations. In addition, we show that the algebra G is always hyper-reflexive. In the last section. we describe similarity invariants. In particular, an n-tuple B of d x d matrices is similar to an irreducible ti-tuple A if and only ifa certain finite set of polynomials vanish on B.
引用
收藏
页码:506 / 545
页数:40
相关论文
共 50 条
  • [41] Non-commuting Graphs of a Finite p-Group
    Moradipour, Kayvan
    Ilangovan, Sheila
    Teymourian, Roudin
    [J]. 4TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (ICMS4): MATHEMATICAL SCIENCES: CHAMPIONING THE WAY IN A PROBLEM BASED AND DATA DRIVEN SOCIETY, 2017, 1830
  • [42] Domination number of the non-commuting graph of finite groups
    Vatandoost, Ebrahim
    Khalili, Masoumeh
    [J]. ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (02) : 228 - 237
  • [43] SOME RESULTS ON CHARACTERIZATION OF FINITE GROUPS BY NON-COMMUTING GRAPH
    Darafsheh, M. R.
    Yousefzadeh, P.
    [J]. TRANSACTIONS ON COMBINATORICS, 2012, 1 (02) : 41 - 48
  • [44] The curvature invariant of a non-commuting n-tuple
    Kribs, DW
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (04) : 426 - 454
  • [45] On Non-commuting Sets in Certain Finite p-Groups
    Liu, Heguo
    Wang, Yulei
    [J]. ALGEBRA COLLOQUIUM, 2015, 22 (04) : 555 - 560
  • [46] ON NON-COMMUTING SETS IN FINITE SOLUBLE CC-GROUPS
    Ballester-Bolinches, Adolfo
    Cossey, John
    [J]. PUBLICACIONS MATEMATIQUES, 2012, 56 (02) : 467 - 471
  • [47] Eulerian properties of non-commuting and non-cyclic graphs of finite groups
    Costa, Daniel
    Davis, Veronica
    Gill, Kenneth
    Hinkle, Gerhardt
    Reid, Les
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (06) : 2659 - 2665
  • [48] On the Non-Commuting Graph of the Group U6n
    Khasraw, S. M. S.
    Abdulla, C.
    Sarmin, N. H.
    Gambo, I.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (03): : 491 - 500
  • [49] Generalization of Randic Index of the Non-commuting Graph for Some Finite Groups
    Roslly, Siti Rosllydia Dania
    Ab Halem, Nur Fatimah Az Zahra
    Zailani, Nur Syasya Sahira
    Alimon, Nur Idayu
    Mohammad, Siti Afiqah
    [J]. MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2023, 19 (05): : 762 - 768
  • [50] On the Hamming distance between two iid random n-tuples over a finite set
    Fu, FW
    Klove, T
    Shen, SY
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) : 803 - 807