On the Non-Commuting Graph of the Group U6n

被引:0
|
作者
Khasraw, S. M. S. [1 ]
Abdulla, C. [2 ]
Sarmin, N. H. [3 ]
Gambo, I. [4 ]
机构
[1] Salahaddin Univ Erbil, Coll Basic Educ, Dept Math, Erbil, Iraq
[2] Tishk Int Univ, Fac Educ, Dept Math Educ, Erbil, Iraq
[3] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Johor, Malaysia
[4] Bauchi State Univ, Fac Sci, Dept Math Sci, Gadau, Nigeria
来源
关键词
non-commuting graph; independent number; chromatic number; clique number; resolving polynomial of a graph;
D O I
10.47836/mjms.18.3.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. The non-commuting graph of G is a simple graph Gamma(G) whose vertices are elements of G\Z(G), where Z(G) is the center of G, and two distinct vertices aa and bb are joint by an edge if ab not equal ba. In this paper, we study the non-commuting graph of the group U-6n. The independent number, clique and chromatic numbers of the non-commuting graph of the group U6n, Gamma(U-6n), are determined. Additionally, the resolving polynomial, total eccentricity and independent polynomials of Gamma(U-6n) are computed. Finally, the detour and eccentric connectivity indices of Gamma(U6n) are found.
引用
收藏
页码:491 / 500
页数:10
相关论文
共 50 条
  • [1] Non-commuting graph of a group
    Abdollahi, A
    Akbari, S
    Maimani, HR
    [J]. JOURNAL OF ALGEBRA, 2006, 298 (02) : 468 - 492
  • [2] The twin non-commuting graph of a group
    Behnaz Tolue
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 591 - 599
  • [3] The twin non-commuting graph of a group
    Tolue, Behnaz
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (02) : 591 - 599
  • [4] On the non-commuting graph of dihedral group
    Khasraw, Sanhan Muhammad Salih
    Ali, Ivan Dler
    Haji, Rashad Rashid
    [J]. ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2020, 8 (02) : 233 - 239
  • [5] GENERALIZATION OF NON-COMMUTING GRAPH OF A FINITE GROUP
    Mansour, Y. Hosseininia
    Talebi, A. A.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (01): : 1 - 8
  • [6] RELATIVE NON-COMMUTING GRAPH OF A FINITE GROUP
    Tolue, B.
    Erfanian, A.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (02)
  • [7] THE GENERALISED NON-COMMUTING GRAPH OF A FINITE GROUP
    Ghayekhloo, Somayeh
    Erfanian, Ahmad
    Tolue, Behnaz
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2014, 67 (08): : 1037 - 1044
  • [8] The non-commuting, non-generating graph of a nilpotent group
    Cameron, Peter J.
    Freedman, Saul D.
    Roney-Dougal, Colva M.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (01): : 1 - 15
  • [9] SOME RESULTS ON NON-COMMUTING GRAPH OF A FINITE GROUP
    Darafsheh, M. R.
    Bigdely, H.
    Bahrami, A.
    Monfared, M. Davoudi
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, (27): : 107 - 118
  • [10] Rainbow connectivity of the non-commuting graph of a finite group
    Wei, Yulong
    Ma, Xuanlong
    Wang, Kaishun
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (07)