On the Non-Commuting Graph of the Group U6n

被引:0
|
作者
Khasraw, S. M. S. [1 ]
Abdulla, C. [2 ]
Sarmin, N. H. [3 ]
Gambo, I. [4 ]
机构
[1] Salahaddin Univ Erbil, Coll Basic Educ, Dept Math, Erbil, Iraq
[2] Tishk Int Univ, Fac Educ, Dept Math Educ, Erbil, Iraq
[3] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Johor, Malaysia
[4] Bauchi State Univ, Fac Sci, Dept Math Sci, Gadau, Nigeria
来源
关键词
non-commuting graph; independent number; chromatic number; clique number; resolving polynomial of a graph;
D O I
10.47836/mjms.18.3.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. The non-commuting graph of G is a simple graph Gamma(G) whose vertices are elements of G\Z(G), where Z(G) is the center of G, and two distinct vertices aa and bb are joint by an edge if ab not equal ba. In this paper, we study the non-commuting graph of the group U-6n. The independent number, clique and chromatic numbers of the non-commuting graph of the group U6n, Gamma(U-6n), are determined. Additionally, the resolving polynomial, total eccentricity and independent polynomials of Gamma(U-6n) are computed. Finally, the detour and eccentric connectivity indices of Gamma(U6n) are found.
引用
收藏
页码:491 / 500
页数:10
相关论文
共 50 条
  • [31] On the non-commuting graph in finite Moufang loops
    Ahmadidelir, Karim
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (04)
  • [32] On the Connectivity of Non-Commuting Graph of Finite Rings
    Khuhirun, Borworn
    Jantarakhajorn, Khajee
    Maneerut, Wanida
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (04): : 887 - 898
  • [33] Conditions on the Edges and Vertices of Non-commuting Graph
    Jahandideh, M.
    Darafsheh, M. R.
    Sarmin, N. H.
    Omer, S. M. S.
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2015, 74 (01):
  • [34] Double-toroidal and 1-planar non-commuting graph of a group
    Pezzott, J. C. M.
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 34 (01): : 132 - 140
  • [35] GRAPH OF NON-COMMUTING PAIRS IN A GROUP - ITS CHROMATIC NUMBER, AND RELATED CARDINAL INVARIANTS OF GROUP
    FABER, V
    LAVER, R
    MCKENZIE, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A9 - A9
  • [36] NON-COMMUTING
    BRIGGS, KM
    NEW SCIENTIST, 1985, 108 (1483) : 71 - 71
  • [37] Closeness Energy of Non-Commuting Graph for Dihedral Groups
    Romdhini, Mamika Ujianita
    Nawawi, Athirah
    Al-Sharqi, Faisal
    Quran, Ashraf Al-
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (01): : 212 - 221
  • [38] Topological indices of non-commuting graph of dihedral groups
    Alimon, Nur Idayu
    Sarmin, Nor Haniza
    Erfanian, Ahmad
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2018, 14 : 473 - 476
  • [39] The Harary Index of the Non-commuting Graph for Dihedral Groups
    Alimon, N. I.
    Sarmin, N. H.
    Erfanian, A.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2020, 44 (06) : 763 - 768
  • [40] Domination number of the non-commuting graph of finite groups
    Vatandoost, Ebrahim
    Khalili, Masoumeh
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (02) : 228 - 237