Particular Solutions of a Class of Nonlinear Reaction-Diffusion Equations

被引:0
|
作者
Chu, Hongxue [1 ]
Jiang, Tongsong [1 ]
机构
[1] Linyi Univ, Chool Sci, Linyi 276005, Peoples R China
关键词
Nonlinear Reaction-Diffusion Equations; The Method of Particular Solutions(MPS); Radial Basis Function (RBF); Multiquadrics (MQ); Thin Plate Splines (TPS); NUMERICAL-METHOD; COLLOCATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose the Method of Particular Solutions for Solving a Class of Nonlinear Reaction-Diffusion Equations using collocation points and approximating the solution using multiquadrics (MQ) and the Thin Plate Splines (TPS) Radial Basis Function (RBF). The scheme works in a similar fashion as finite-difference methods. The results of numerical experiments are presented, and are compared with analytical solutions to confirm the good accuracy of the presented scheme.
引用
收藏
页码:584 / 592
页数:9
相关论文
共 50 条
  • [21] Exact solutions of reaction-diffusion systems and nonlinear wave equations
    M. Rodrigo
    M. Mimura
    [J]. Japan Journal of Industrial and Applied Mathematics, 2001, 18 : 657 - 696
  • [22] On Exact Multidimensional Solutions of a Nonlinear System of Reaction-Diffusion Equations
    Kosov, A. A.
    Semenov, E. I.
    [J]. DIFFERENTIAL EQUATIONS, 2018, 54 (01) : 106 - 120
  • [23] Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay
    Zhu, Bo
    Liu, Lishan
    Wu, Yonghong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (06) : 1811 - 1818
  • [24] Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay
    Zhu, Bo
    Liu, Lishan
    Wu, Yonghong
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 61 : 73 - 79
  • [25] On a Class of Reaction-Diffusion Equations with Aggregation
    Chen, Li
    Desvillettes, Laurent
    Latos, Evangelos
    [J]. ADVANCED NONLINEAR STUDIES, 2021, 21 (01) : 119 - 133
  • [26] Approximate Symmetry Analysis of a Class of Perturbed Nonlinear Reaction-Diffusion Equations
    Nadjafikhah, Mehdi
    Mahdavi, Abolhassan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [27] ON NONLINEAR COUPLED REACTION-DIFFUSION EQUATIONS
    PACHPATTE, BG
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1985, 16 (04) : 297 - 307
  • [28] Nonlinear Nonlocal Reaction-Diffusion Equations
    Rodriguez-Bernal, Anibal
    Sastre-Gomez, Silvia
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 4 : 53 - 61
  • [29] Remarks on the paper "The extinction behavior of the solutions for a class of reaction-diffusion equations"
    Song-lin C.
    [J]. Applied Mathematics and Mechanics, 2002, 23 (5): : 618 - 618
  • [30] Periodic solutions for a class of reaction-diffusion equations with p-Laplacian
    Pang, Peter Y. H.
    Wang, Yifu
    Yin, Jingxue
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 323 - 331