Quantum Higher Order Singular Value Decomposition

被引:0
|
作者
Gu, Lejia [1 ]
Wang, Xiaoqiang [1 ]
Zhang, Guofeng [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
来源
2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC) | 2019年
关键词
Quantum algorithm; Quantum machine learning; Higher order singular value decomposition (HOSVD); Tensor; ALGORITHMS;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Higher order singular value decomposition (HOSVD) is an important tool for analyzing big data in multilinear algebra and machine learning. In this paper, we present a quantum algorithm for higher order singular value decomposition. Our method allows one to decompose a tensor into a core tensor containing tensor singular values and some unitary matrices by quantum computers. Compared to the classical HOSVD algorithm, our quantum algorithm provides an exponential speedup.
引用
收藏
页码:1166 / 1171
页数:6
相关论文
共 50 条
  • [21] A Higher-Order Singular Value Decomposition Tensor Emulator for Spatiotemporal Simulators
    Giri Gopalan
    Christopher K. Wikle
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 22 - 45
  • [22] Quantum tensor singular value decomposition
    Wang, Xiaoqiang
    Gu, Lejia
    Lee, Heung-wing
    Zhang, Guofeng
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (07):
  • [23] Variational Quantum Singular Value Decomposition
    Wang, Xin
    Song, Zhixin
    Wang, Youle
    QUANTUM, 2021, 5 : 1 - 23
  • [24] Higher-order singular value decomposition and the reduced density matrices of three qubits
    Choong, Pak Shen
    Zainuddin, Hishamuddin
    Chan, Kar Tim
    Husain, Sh. K. Said
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [25] Higher-order singular value decomposition and the reduced density matrices of three qubits
    Pak Shen Choong
    Hishamuddin Zainuddin
    Kar Tim Chan
    Sh. K. Said Husain
    Quantum Information Processing, 2020, 19
  • [26] An Iterative Method for Tensor Inpainting Based on Higher-Order Singular Value Decomposition
    S. F. Yeganli
    R. Yu
    H. Demirel
    Circuits, Systems, and Signal Processing, 2018, 37 : 3827 - 3841
  • [27] L1-NORM HIGHER-ORDER SINGULAR-VALUE DECOMPOSITION
    Markopoulos, Panos P.
    Chachlakis, Dimitris G.
    Prater-Bennette, Ashley
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1353 - 1357
  • [28] An Iterative Method for Tensor Inpainting Based on Higher-Order Singular Value Decomposition
    Yeganli, S. F.
    Yu, R.
    Demirel, H.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (09) : 3827 - 3841
  • [29] A HIGHER-ORDER GENERALIZED SINGULAR VALUE DECOMPOSITION FOR RANK-DEFICIENT MATRICES
    Kempf, Idris
    Goulart, Paul J.
    Duncan, Stephen R.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (03) : 1047 - 1072
  • [30] FAST ALGORITHMS FOR HIGHER-ORDER SINGULAR VALUE DECOMPOSITION FROM INCOMPLETE DATA
    Xu, Yangyang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2017, 35 (04) : 397 - 422