Higher-order singular value decomposition and the reduced density matrices of three qubits

被引:0
|
作者
Pak Shen Choong
Hishamuddin Zainuddin
Kar Tim Chan
Sh. K. Said Husain
机构
[1] Universiti Putra Malaysia,Institute for Mathematical Research
[2] Universiti Putra Malaysia,Malaysia
来源
关键词
Quantum entanglement; Higher-order singular value decomposition; Local unitary equivalence; Three qubits; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we demonstrate that higher-order singular value decomposition (HOSVD) can be used to identify special states in three qubits by local unitary (LU) operations. Since the matrix unfoldings of three qubits are related to their reduced density matrices, HOSVD simultaneously diagonalizes the one-body reduced density matrices of three qubits. From the all-orthogonality conditions of HOSVD, we computed the special states of three qubits. Furthermore, we showed that it is possible to construct a polytope that encapsulates all the special states of three qubits by LU operations with HOSVD.
引用
收藏
相关论文
共 50 条
  • [1] Higher-order singular value decomposition and the reduced density matrices of three qubits
    Choong, Pak Shen
    Zainuddin, Hishamuddin
    Chan, Kar Tim
    Husain, Sh. K. Said
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [2] A HIGHER-ORDER GENERALIZED SINGULAR VALUE DECOMPOSITION FOR RANK-DEFICIENT MATRICES
    Kempf, Idris
    Goulart, Paul J.
    Duncan, Stephen R.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (03) : 1047 - 1072
  • [3] The Higher-Order Singular Value Decomposition: Theory and an Application
    Bergqvist, Goran
    Larsson, Erik G.
    IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (03) : 151 - 154
  • [4] Image encryption based on higher-order singular value decomposition
    Li, Yong
    Xun, Xianchao
    Wang, Qingzhu
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2014, 43 : 243 - 247
  • [5] A NEW TRUNCATION STRATEGY FOR THE HIGHER-ORDER SINGULAR VALUE DECOMPOSITION
    Vannieuwenhoven, Nick
    Vandebril, Raf
    Meerbergen, Karl
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A1027 - A1052
  • [6] Ensemble of Tensor Classifiers Based on the Higher-Order Singular Value Decomposition
    Cyganek, Boguslaw
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, 2012, 7209 : 578 - 589
  • [7] Coarse-graining renormalization by higher-order singular value decomposition
    Xie, Z. Y.
    Chen, J.
    Qin, M. P.
    Zhu, J. W.
    Yang, L. P.
    Xiang, T.
    PHYSICAL REVIEW B, 2012, 86 (04):
  • [8] Fast multilinear Singular Value Decomposition for higher-order Hankel tensors
    Boizard, Maxime
    Boyer, Remy
    Favier, Gerard
    Larzabal, Pascal
    2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 437 - 440
  • [9] A Higher-Order Singular Value Decomposition Tensor Emulator for Spatiotemporal Simulators
    Gopalan, Giri
    Wikle, Christopher K.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 22 - 45
  • [10] A tensor bidiagonalization method for higher-order singular value decomposition with applications
    El Hachimi, A.
    Jbilou, K.
    Ratnani, A.
    Reichel, L.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (02)