Bootstrap inference for local populations

被引:3
|
作者
Lunneborg, CE
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] Univ Washington, Dept Psychol, Seattle, WA 98195 USA
来源
DRUG INFORMATION JOURNAL | 2001年 / 35卷 / 04期
关键词
available cases; bootstrap inference; measurement error; randomization; resampling;
D O I
10.1177/009286150103500429
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The randomized available case study, in which a nonrandom set of cases (patients, animals, laboratory runs) is randomized among two or more treatments, is a staple of biomedical research. Traditionally, such studies have been analyzed as though the cases were a random sample from an infinitely large population (1). The resulting statistical inferences address incorrect populations. More importantly, in the presence of response measurement error these inferences are inappropriate for the, correct populations, understating the differential impact of treatment (2). In this paper I develop and illustrate a nonparametric bootstrap approach to inference in such studies, an approach that is faithful to the local origins of the randomized cases and can account for the influence of measurement error.
引用
收藏
页码:1327 / 1342
页数:16
相关论文
共 50 条
  • [21] Bootstrap Inference for Group Factor Models
    Goncalves, Silvia
    Koh, Julia
    Perron, Benoit
    JOURNAL OF FINANCIAL ECONOMETRICS, 2024,
  • [22] Online bootstrap inference for the geometric median
    Cheng, Guanghui
    Xiong, Qiang
    Lin, Ruitao
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 197
  • [23] Bootstrap predictive inference for ARIMA processes
    Pascual, L
    Romo, J
    Ruiz, E
    JOURNAL OF TIME SERIES ANALYSIS, 2004, 25 (04) : 449 - 465
  • [24] Snowboot: Bootstrap Methods for Network Inference
    Chen, Yuzhou
    Gel, Yulia R.
    Lyubchich, Vyacheslav
    Nezafati, Kusha
    R JOURNAL, 2018, 10 (02): : 95 - 113
  • [25] ROBUST INFERENCE VIA MULTIPLIER BOOTSTRAP
    Chen, Xi
    Zhou, Wen-Xin
    ANNALS OF STATISTICS, 2020, 48 (03): : 1665 - 1691
  • [26] Bootstrap methods for inference in the Parks model
    Moundigbaye, Mantobaye
    Messemer, Clarisse
    Parks, Richard W.
    Reed, W. Robert
    ECONOMICS-THE OPEN ACCESS OPEN-ASSESSMENT E-JOURNAL, 2020, 14
  • [27] BOOTSTRAP METHODS FOR FINITE POPULATIONS
    BOOTH, JG
    BUTLER, RW
    HALL, P
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) : 1282 - 1289
  • [28] Characterizing features affecting local ancestry inference performance in admixed populations
    Honorato-Mauer, Jessica
    Shah, Nirav N.
    Maihofer, Adam X.
    Zai, Clement C.
    Belangero, Sintia
    Nievergelt, Caroline M.
    Santoro, Marcos
    Atkinson, E. G.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2025, 112 (02)
  • [29] Local Bootstrap Percolation
    Gravner, Janko
    Holroyd, Alexander E.
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 385 - 399
  • [30] Local block bootstrap
    Paparoditis, E
    Politis, DN
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (11) : 959 - 962