Snowboot: Bootstrap Methods for Network Inference

被引:0
|
作者
Chen, Yuzhou [1 ]
Gel, Yulia R. [2 ]
Lyubchich, Vyacheslav [3 ]
Nezafati, Kusha [2 ]
机构
[1] Southern Methodist Univ, Dept Stat Sci, POB 750332, Dallas, TX 75275 USA
[2] Univ Texas Dallas, Dept Math Sci, 800 West Campbell Rd, Richardson, TX 75080 USA
[3] Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, 146 Williams St,POB 38, Solomons, MD 20688 USA
来源
R JOURNAL | 2018年 / 10卷 / 02期
基金
美国国家科学基金会;
关键词
GRAPHS; MODELS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Complex networks are used to describe a broad range of disparate social systems and natural phenomena, from power grids to customer segmentation to human brain connectome. Challenges of parametric model specification and validation inspire a search for more data-driven and flexible nonparametric approaches for inference of complex networks. In this paper we discuss methodology and R implementation of two bootstrap procedures on random networks, that is, patchwork bootstrap of Thompson et al. (2016) and Gel et al. (2017) and bootstrap of Snijders and Borgatti (1999). To our knowledge, the new R package snowboot is the first implementation of the vertex and patchwork bootstrap inference on networks in R. Our new package is accompanied with a detailed user's manual, and is compatible with the popular R package on network studies igraph. We evaluate the patchwork bootstrap and vertex bootstrap with extensive simulation studies and illustrate their utility in an application to analysis of real world networks.
引用
收藏
页码:95 / 113
页数:19
相关论文
共 50 条
  • [1] Bootstrap methods for inference in the Parks model
    Moundigbaye, Mantobaye
    Messemer, Clarisse
    Parks, Richard W.
    Reed, W. Robert
    [J]. ECONOMICS-THE OPEN ACCESS OPEN-ASSESSMENT E-JOURNAL, 2020, 14
  • [2] Bootstrap inference for network vector autoregression in large-scale social network
    Manho Hong
    Eunju Hwang
    [J]. Journal of the Korean Statistical Society, 2021, 50 : 1238 - 1258
  • [3] Bootstrap inference for network vector autoregression in large-scale social network
    Hong, Manho
    Hwang, Eunju
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2021, 50 (04) : 1238 - 1258
  • [4] Bootstrap inference in econometrics
    MacKinnon, JG
    [J]. CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 2002, 35 (04): : 615 - 645
  • [5] Fast and reliable jackknife and bootstrap methods for cluster-robust inference
    MacKinnon, James G.
    Nielsen, Morten Orregaard
    Webb, Matthew D.
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2023, 38 (05) : 671 - 694
  • [6] Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference
    MacKinnon, James G.
    Nielsen, Morten Ørregaard
    Webb, Matthew D.
    [J]. arXiv, 2023,
  • [7] Bootstrap methods for statistical inference from stereological estimates of volume fraction
    Mattfeldt, T
    Fleischer, F
    [J]. JOURNAL OF MICROSCOPY-OXFORD, 2005, 218 : 160 - 170
  • [8] BOOTSTRAP INFERENCE FOR NETWORK CONSTRUCTION WITH AN APPLICATION TO A BREAST CANCER MICROARRAY STUDY
    Li, Shuang
    Hsu, Li
    Peng, Jie
    Wang, Pei
    [J]. ANNALS OF APPLIED STATISTICS, 2013, 7 (01): : 391 - 417
  • [9] Bartlett-type corrections and bootstrap adjustments of likelihood-based inference methods for network meta-analysis
    Noma, Hisashi
    Nagashima, Kengo
    Maruo, Kazushi
    Gosho, Masahiko
    Furukawa, Toshi A.
    [J]. STATISTICS IN MEDICINE, 2018, 37 (07) : 1178 - 1190
  • [10] A Review of Network Topology Inference Methods
    Li, Yi
    Tian, Xin
    Pham, Khanh D.
    Chen, Genshe
    [J]. SENSORS AND SYSTEMS FOR SPACE APPLICATIONS XIV, 2021, 11755