Snowboot: Bootstrap Methods for Network Inference

被引:0
|
作者
Chen, Yuzhou [1 ]
Gel, Yulia R. [2 ]
Lyubchich, Vyacheslav [3 ]
Nezafati, Kusha [2 ]
机构
[1] Southern Methodist Univ, Dept Stat Sci, POB 750332, Dallas, TX 75275 USA
[2] Univ Texas Dallas, Dept Math Sci, 800 West Campbell Rd, Richardson, TX 75080 USA
[3] Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, 146 Williams St,POB 38, Solomons, MD 20688 USA
来源
R JOURNAL | 2018年 / 10卷 / 02期
基金
美国国家科学基金会;
关键词
GRAPHS; MODELS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Complex networks are used to describe a broad range of disparate social systems and natural phenomena, from power grids to customer segmentation to human brain connectome. Challenges of parametric model specification and validation inspire a search for more data-driven and flexible nonparametric approaches for inference of complex networks. In this paper we discuss methodology and R implementation of two bootstrap procedures on random networks, that is, patchwork bootstrap of Thompson et al. (2016) and Gel et al. (2017) and bootstrap of Snijders and Borgatti (1999). To our knowledge, the new R package snowboot is the first implementation of the vertex and patchwork bootstrap inference on networks in R. Our new package is accompanied with a detailed user's manual, and is compatible with the popular R package on network studies igraph. We evaluate the patchwork bootstrap and vertex bootstrap with extensive simulation studies and illustrate their utility in an application to analysis of real world networks.
引用
收藏
页码:95 / 113
页数:19
相关论文
共 50 条
  • [31] Bootstrap predictive inference for ARIMA processes
    Pascual, L
    Romo, J
    Ruiz, E
    JOURNAL OF TIME SERIES ANALYSIS, 2004, 25 (04) : 449 - 465
  • [32] ROBUST INFERENCE VIA MULTIPLIER BOOTSTRAP
    Chen, Xi
    Zhou, Wen-Xin
    ANNALS OF STATISTICS, 2020, 48 (03): : 1665 - 1691
  • [33] Bootstrap Methods for Statistical Inference. Part I: Comparative Forecast Verification for Continuous Variables
    Gilleland, Eric
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2020, 37 (11) : 2117 - 2134
  • [34] Improving network inference algorithms using resampling methods
    Sean M Colby
    Ryan S McClure
    Christopher C Overall
    Ryan S Renslow
    Jason E McDermott
    BMC Bioinformatics, 19
  • [35] Network Structure Inference, A Survey: Motivations, Methods, and Applications
    Brugere, Ivan
    Gallagher, Brian
    Berger-Wolf, Tanya Y.
    ACM COMPUTING SURVEYS, 2018, 51 (02)
  • [36] Network tomography and improved methods for delay distribution inference
    Sun, Yi
    Li, Dong
    Sun, Hongjie
    9TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY: TOWARD NETWORK INNOVATION BEYOND EVOLUTION, VOLS 1-3, 2007, : 1433 - 1437
  • [37] Improving network inference algorithms using resampling methods
    Colby, Sean M.
    McClure, Ryan S.
    Overall, Christopher C.
    Renslow, Ryan S.
    McDermott, Jason E.
    BMC BIOINFORMATICS, 2018, 19
  • [38] Bayesian Network Structure Learning and Inference Methods for Handwriting
    Puri, Mukta
    Srihari, Sargur N.
    Tang, Yi
    2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2013, : 1320 - 1324
  • [39] Quantitative assessment and validation of network inference methods in bioinformatics
    Haibe-Kains, Benjamin
    Emmert-Streib, Frank
    FRONTIERS IN GENETICS, 2014, 5
  • [40] Network-Based Inference Methods for Drug Repositioning
    Chen, Hailin
    Zhang, Heng
    Zhang, Zuping
    Cao, Yiqin
    Tang, Wenliang
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015