Snowboot: Bootstrap Methods for Network Inference

被引:0
|
作者
Chen, Yuzhou [1 ]
Gel, Yulia R. [2 ]
Lyubchich, Vyacheslav [3 ]
Nezafati, Kusha [2 ]
机构
[1] Southern Methodist Univ, Dept Stat Sci, POB 750332, Dallas, TX 75275 USA
[2] Univ Texas Dallas, Dept Math Sci, 800 West Campbell Rd, Richardson, TX 75080 USA
[3] Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, 146 Williams St,POB 38, Solomons, MD 20688 USA
来源
R JOURNAL | 2018年 / 10卷 / 02期
基金
美国国家科学基金会;
关键词
GRAPHS; MODELS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Complex networks are used to describe a broad range of disparate social systems and natural phenomena, from power grids to customer segmentation to human brain connectome. Challenges of parametric model specification and validation inspire a search for more data-driven and flexible nonparametric approaches for inference of complex networks. In this paper we discuss methodology and R implementation of two bootstrap procedures on random networks, that is, patchwork bootstrap of Thompson et al. (2016) and Gel et al. (2017) and bootstrap of Snijders and Borgatti (1999). To our knowledge, the new R package snowboot is the first implementation of the vertex and patchwork bootstrap inference on networks in R. Our new package is accompanied with a detailed user's manual, and is compatible with the popular R package on network studies igraph. We evaluate the patchwork bootstrap and vertex bootstrap with extensive simulation studies and illustrate their utility in an application to analysis of real world networks.
引用
收藏
页码:95 / 113
页数:19
相关论文
共 50 条
  • [41] Revealing strengths and weaknesses of methods for gene network inference
    Marbach, Daniel
    Prill, Robert J.
    Schaffter, Thomas
    Mattiussi, Claudio
    Floreano, Dario
    Stolovitzky, Gustavo
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (14) : 6286 - 6291
  • [42] Robust spatial extent inference with a semiparametric bootstrap joint inference procedure
    Vandekar, Simon N.
    Satterthwaite, Theodore D.
    Xia, Cedric H.
    Adebimpe, Azeez
    Ruparel, Kosha
    Gur, Ruben C.
    Gur, Raquel E.
    Shinohara, Russell T.
    BIOMETRICS, 2019, 75 (04) : 1145 - 1155
  • [43] Bootstrap methods and their applications
    Freeman, T
    INTERFACES, 1998, 28 (06) : 71 - 72
  • [44] Bootstrap methods in statisticsResampling
    Peter Hall
    Abhinanda Sarkar
    Resonance, 2000, 5 (9) : 41 - 48
  • [45] Bootstrap Methods in Econometrics
    Horowitz, Joel L.
    ANNUAL REVIEW OF ECONOMICS, VOL 11, 2019, 2019, 11 : 193 - 224
  • [46] Bootstrap methods in CFT
    Rastelli, Leonardo
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2016, 64 (4-5): : 276 - 278
  • [47] A REVIEW OF BOOTSTRAP METHODS
    SWANEPOEL, JWH
    SOUTH AFRICAN STATISTICAL JOURNAL, 1990, 24 (01) : 1 - 34
  • [48] Bootstrap methods in econometrics
    MacKinnon, James G.
    ECONOMIC RECORD, 2006, 82 : S2 - S18
  • [49] Extensions of saddlepoint-based bootstrap inference
    Paige, Robert L.
    Trindade, A. Alexandre
    Wickramasinghe, R. Indika P.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (05) : 961 - 981
  • [50] Comments on: "Bootstrap Inference for Group Factor Models"
    Wolf, Michael
    JOURNAL OF FINANCIAL ECONOMETRICS, 2024,