Covering random points in a unit disk

被引:1
|
作者
Hansen, Jennie C. [1 ,2 ]
Schmutz, Eric [3 ]
Sheng, Li [3 ]
机构
[1] Heriot Watt Univ, Actuarial Math & Stat Dept, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
关键词
dominating set; random geometric graph; unit ball graph;
D O I
10.1239/aap/1208358884
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let D be the punctured unit disk. It is easy to see that no pair x, y in D can cover D in the sense that D cannot be contained in the union of the unit disks centred at x and y. With this fact in mind, let V-n = {X-1, X-2, ..., X-n}, where X-1, X-2, ... are random points sampled independently from a uniform distribution on D. We prove that, with asymptotic probability 1, there exist two points in V-n, that cover all of V-n.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 50 条
  • [31] COVERING BOXES BY POINTS
    FONDERFLAASS, DG
    KOSTOCHKA, AV
    [J]. DISCRETE MATHEMATICS, 1993, 120 (1-3) : 269 - 275
  • [32] COVERING WITH HECKE POINTS
    CHIU, P
    [J]. JOURNAL OF NUMBER THEORY, 1995, 53 (01) : 25 - 44
  • [33] Covering points with a polygon
    Barequet, Gill
    Dickerson, Matthew T.
    Scharf, Yuval
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2008, 39 (03): : 143 - 162
  • [34] Covering numbers of different points in Dvoretzky covering
    Barral, J
    Fan, AH
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (04): : 275 - 317
  • [35] Geometric Covering Number: Covering Points with Curves
    Bishnu, Arijit
    Francis, Mathew
    Majumder, Pritam
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 88 - 102
  • [36] The Growth and Borel Points of Random Algebroid Functions in the Unit Disc
    Sun, Daochun
    Huo, Yingying
    Chai, Fujie
    [J]. ACTA MATHEMATICA SCIENTIA, 2021, 41 (04) : 1119 - 1129
  • [37] RADIAL DISTRIBUTION OF THE CENTER OF GRAVITY OF RANDOM POINTS ON A UNIT CIRCLE
    SCHEID, F
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1958, 60 (04): : 307 - 308
  • [38] THE GROWTH AND BOREL POINTS OF RANDOM ALGEBROID FUNCTIONS IN THE UNIT DISC
    孙道椿
    霍颖莹
    柴富杰
    [J]. Acta Mathematica Scientia, 2021, 41 (04) : 1119 - 1129
  • [39] The Growth and Borel Points of Random Algebroid Functions in the Unit Disc
    Daochun Sun
    Yingying Huo
    Fujie Chai
    [J]. Acta Mathematica Scientia, 2021, 41 : 1119 - 1129
  • [40] The connected disk covering problem
    Xu, Yi
    Peng, Jigen
    Wang, Wencheng
    Zhu, Binhai
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (02) : 538 - 554