Covering random points in a unit disk

被引:1
|
作者
Hansen, Jennie C. [1 ,2 ]
Schmutz, Eric [3 ]
Sheng, Li [3 ]
机构
[1] Heriot Watt Univ, Actuarial Math & Stat Dept, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
关键词
dominating set; random geometric graph; unit ball graph;
D O I
10.1239/aap/1208358884
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let D be the punctured unit disk. It is easy to see that no pair x, y in D can cover D in the sense that D cannot be contained in the union of the unit disks centred at x and y. With this fact in mind, let V-n = {X-1, X-2, ..., X-n}, where X-1, X-2, ... are random points sampled independently from a uniform distribution on D. We prove that, with asymptotic probability 1, there exist two points in V-n, that cover all of V-n.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 50 条