Covering random points in a unit disk

被引:1
|
作者
Hansen, Jennie C. [1 ,2 ]
Schmutz, Eric [3 ]
Sheng, Li [3 ]
机构
[1] Heriot Watt Univ, Actuarial Math & Stat Dept, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
关键词
dominating set; random geometric graph; unit ball graph;
D O I
10.1239/aap/1208358884
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let D be the punctured unit disk. It is easy to see that no pair x, y in D can cover D in the sense that D cannot be contained in the union of the unit disks centred at x and y. With this fact in mind, let V-n = {X-1, X-2, ..., X-n}, where X-1, X-2, ... are random points sampled independently from a uniform distribution on D. We prove that, with asymptotic probability 1, there exist two points in V-n, that cover all of V-n.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 50 条
  • [1] On random points in the unit disk
    Ellis, Robert B.
    Jia, Xingde
    Yan, Catherine
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (01) : 14 - 25
  • [2] Fuzzy disk for covering fuzzy points
    Li, LS
    Kabadi, SN
    Nair, KPK
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2005, 160 (02) : 560 - 573
  • [3] RANDOM FUNCTIONS IN THE UNIT DISK
    JACOB, M
    OFFORD, C
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (08): : 367 - 369
  • [4] Covering Many or Few Points with Unit Disks
    de Berg, Mark
    Cabello, Sergio
    Har-Peled, Sariel
    [J]. THEORY OF COMPUTING SYSTEMS, 2009, 45 (03) : 446 - 469
  • [5] Covering points by unit disks of fixed location
    Carmi, Paz
    Katz, Matthew J.
    Lev-Tov, Nissan
    [J]. ALGORITHMS AND COMPUTATION, 2007, 4835 : 644 - +
  • [6] Covering Many or Few Points with Unit Disks
    Mark de Berg
    Sergio Cabello
    Sariel Har-Peled
    [J]. Theory of Computing Systems, 2009, 45
  • [7] Covering many or few points with unit disks
    de Berg, Mark
    Cabello, Sergio
    Har-Peled, Sariel
    [J]. APPROXIMATION AND ONLINE ALGORITHMS, 2006, 4368 : 55 - 68
  • [8] Regular points for Lagrange interpolation on the unit disk
    Sauer, T
    Xu, Y
    [J]. NUMERICAL ALGORITHMS, 1996, 12 (3-4) : 287 - 296
  • [9] Random points in the unit ball of lpn
    Aubrun, Guillaume
    [J]. POSITIVITY, 2006, 10 (04) : 755 - 759
  • [10] Random Points in the Unit Ball of ℓnp
    Guillaume Aubrun
    [J]. Positivity, 2006, 10 : 755 - 759