GLOBAL WELL-POSEDNESS OF THE RELATIVISTIC BOLTZMANN EQUATION

被引:8
|
作者
Wang, Yong [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Huairou 101488, Peoples R China
关键词
relativistic Boltzmann equation; relativistic Maxwellian; Lorentz transformation; asymptotic behavior; large amplitude oscillations; LANDAU-MAXWELL SYSTEM; ASYMPTOTIC STABILITY; CLASSICAL-SOLUTIONS; ANGULAR CUTOFF; CAUCHY-PROBLEM; WHOLE SPACE; EXPONENTIAL DECAY; NEWTONIAN LIMIT; SOFT POTENTIALS; TIME DECAY;
D O I
10.1137/17M112600X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the global existence and uniqueness of a mild solution to the relativistic Boltzmann equation both in the whole space and in torus for a class of initial data with bounded velocity-weighted L-infinity-norm and some smallness on (LxLp infinity)-L-1-norm as well as on defect mass, energy, and entropy. Moreover, the asymptotic stability of the solutions is also investigated in the case of torus.
引用
收藏
页码:5637 / 5694
页数:58
相关论文
共 50 条
  • [1] Global well-posedness of a binary-ternary Boltzmann equation
    Ampatzoglou, Ioakeim
    Gamba, Irene M.
    Pavlovic, Natasa
    Taskovic, Maja
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (02): : 327 - 369
  • [2] Global well-posedness of a binary-ternary Boltzmann equation
    Ampatzoglou, Ioakeim
    Gamba, Irene M.
    Pavlovic, Natasa
    Taskovic, Maja
    [J]. Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 2022, 39 (02): : 327 - 369
  • [3] Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data
    Renjun Duan
    Feimin Huang
    Yong Wang
    Tong Yang
    [J]. Archive for Rational Mechanics and Analysis, 2017, 225 : 375 - 424
  • [4] Global Well-Posedness of the Spatially Homogeneous Hubbard-Boltzmann Equation
    Lukkarinen, Jani
    Mei, Peng
    Spohn, Herbert
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (05) : 758 - 807
  • [5] Global Well-Posedness in Spatially Critical Besov Space for the Boltzmann Equation
    Duan, Renjun
    Liu, Shuangqian
    Xu, Jiang
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) : 711 - 745
  • [6] Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data
    Duan, Renjun
    Huang, Feimin
    Wang, Yong
    Yang, Tong
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 375 - 424
  • [7] Global Well-Posedness in Spatially Critical Besov Space for the Boltzmann Equation
    Renjun Duan
    Shuangqian Liu
    Jiang Xu
    [J]. Archive for Rational Mechanics and Analysis, 2016, 220 : 711 - 745
  • [8] GLOBAL WELL-POSEDNESS OF BOLTZMANN-FERMI-DIRAC EQUATION FOR HARD POTENTIAL
    Jiang, Ning
    Zhou, Kai
    [J]. KINETIC AND RELATED MODELS, 2024,
  • [9] Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates
    Chen, Thomas
    Denlinger, Ryan
    Pavlovic, Natasa
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (01) : 327 - 381
  • [10] Well-posedness and global existence for the Novikov equation
    Wu, Xinglong
    Yin, Zhaoyang
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2012, 11 (03) : 707 - 727