GLOBAL WELL-POSEDNESS OF BOLTZMANN-FERMI-DIRAC EQUATION FOR HARD POTENTIAL

被引:0
|
作者
Jiang, Ning [1 ]
Zhou, Kai [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
BOSE-EINSTEIN PARTICLES; SPATIALLY HOMOGENEOUS BOLTZMANN; STRONG-CONVERGENCE; CUTOFF; DERIVATION; EXISTENCE; COMPACTNESS; OPERATORS; MODELS; SPACE;
D O I
10.3934/krm.2024014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. Boltzmann-Fermi-Dirac equation is a modification of classical Boltzmann equation when quantum effects are taken into account in dilute gas dynamics. We consider the well-posedness of Boltzmann-Fermi-Dirac equation for the collision kernel B(|v - v*|, cos 0) given by an inverse power-law repulsive potential. Precisely, B(|v - v*|, cos theta) = |v - v(*)|(2 rho-5 )(sin(rho-3) theta/2 - cos (rho-3 )theta/2)(2) and 1 < p < 3. With this kind of collision kernel, we employ the new estimates of bilinear and trilinear terms in collision integral to obtain the global existence of Boltzmann-Fermi-Dirac equation near equilibrium for 52 < p < 3. The main difficulty comes from the singularity arising from the angular part of B(|v - v(*)|, cos theta).
引用
收藏
页数:38
相关论文
共 50 条