Survey on clustering methods : Towards fuzzy clustering for big data

被引:0
|
作者
Ben Ayed, Abdelkarim [1 ]
Ben Halima, Mohamed [1 ]
Alimi, Adel M. [1 ]
机构
[1] Univ Sfax, Natl Engn Sch Sfax, REGIM Lab, Res Groups Intelligent Machines, BP 1173, Sfax 3038, Tunisia
来源
2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR) | 2014年
关键词
clustering; fuzzy; big data; ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this report, we propose to give a review of the most used clustering methods in the literature. First, we give an introduction about clustering methods, how they work and their main challenges. Second, we present the clustering methods with some comparisons including mainly the classical partitioning clustering methods like well-known k-means algorithms, Gaussian Mixture Modals and their variants, the classical hierarchical clustering methods like the agglomerative algorithm, the fuzzy clustering methods and Big data clustering methods. We present some examples of clustering algorithms comparison. Finally, we present our ideas to build a scalable and noise insensitive clustering system based on fuzzy type-2 clustering methods.
引用
收藏
页码:331 / 336
页数:6
相关论文
共 50 条
  • [41] Fuzzy and possibilistic clustering for fuzzy data
    Coppi, Renato
    D'Urso, Pierpaolo
    Giordani, Paolo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 915 - 927
  • [42] Fuzzy Clustering Methods in Data Mining: A comparative Case Analysis
    Raju, G.
    Thomas, Binu
    Tobgay, Sonam
    Kumar, Th. Shanta
    2008 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER THEORY AND ENGINEERING, 2008, : 489 - 493
  • [43] Fuzzy clustering for symbolic data
    El-Sonbaty, Y
    Ismail, MA
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1998, 6 (02) : 195 - 204
  • [44] Fuzzy clustering of mixed data
    D'Urso, Pierpaolo
    Massari, Riccardo
    INFORMATION SCIENCES, 2019, 505 : 513 - 534
  • [45] Fuzzy clustering of macroarray data
    Georgieva, O
    Klawonn, F
    Härtig, E
    Computational Intelligence, Theory and Applications, 2005, : 83 - 94
  • [46] Deep Data Fuzzy Clustering
    Przybyla, Tomasz
    Pander, Tomasz
    Czabanski, Robert
    2014 IEEE 7TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC), 2014, : 130 - 134
  • [47] FUZZY CLUSTERING OF ECOLOGICAL DATA
    EQUIHUA, M
    JOURNAL OF ECOLOGY, 1990, 78 (02) : 519 - 534
  • [48] On fuzzy clustering of directional data
    Yang, MS
    Pan, JA
    FUZZY SETS AND SYSTEMS, 1997, 91 (03) : 319 - 326
  • [49] A SURVEY ON CLUSTERING METHODS FOR NUMERIC, CATEGORICAL AND MIXED VARIABLES DATA
    Nisha
    Hooda, B. K.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2022, 18 (02): : 675 - 679
  • [50] A Dietary Nutrition Analysis Method Leveraging Big Data Processing and Fuzzy Clustering
    Lei, Lihui
    Cai, Yuan
    HEALTH INFORMATION SCIENCE, HIS 2016, 2016, 10038 : 129 - 135