A SURVEY ON CLUSTERING METHODS FOR NUMERIC, CATEGORICAL AND MIXED VARIABLES DATA

被引:0
|
作者
Nisha [1 ]
Hooda, B. K. [1 ]
机构
[1] CCSHAU, Coll Basic Sci & Humanities, Dept Math & Stat, Hisar 125004, India
关键词
Clustering; Categorical variables; Mixed variables; FCM; K-prototypes; ALGORITHM;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Clustering is widely used in different fields such as biology, engineering, text mining, bioinformatics and agriculture. Most of the clustering methods use distance measures to find the similarity or dissimilarity between data objects. Traditional clustering algorithms use Euclidean distance measure to judge the similarity of two data objects. It works well when the attributes of a data set are purely quantitative. However, Euclidean distance measure fails to capture the similarity of data elements when attributes are qualitative or mixed. In this paper, clustering algorithms based on the data type containing numeric, categorical and mixed variables are reviewed such as DBSCAN, fuzzy c means, ROCK, K-modes, K-prototypes and Modified K-means.
引用
收藏
页码:675 / 679
页数:5
相关论文
共 50 条
  • [1] A CLUSTERING ALGORITHM FOR MIXED NUMERIC AND CATEGORICAL DATA
    Ohn Mar San
    Van-Nam Huynh
    Yoshiteru Nakamori
    [J]. Journal of Systems Science & Complexity, 2003, (04) : 562 - 571
  • [2] Clustering Mixed Numeric and Categorical Data With Cuckoo Search
    Ji, Jinchao
    Pang, Wei
    Li, Zairong
    He, Fei
    Feng, Guozhong
    Zhao, Xiaowei
    [J]. IEEE ACCESS, 2020, 8 : 30988 - 31003
  • [3] Algorithm for fuzzy clustering of mixed data with numeric and categorical attributes
    Ahmad, A
    Dey, L
    [J]. DISTRIBUTED COMPUTING AND INTERNET TECHNOLOGY, PROCEEDINGS, 2005, 3816 : 561 - 572
  • [4] Entropy based clustering of data streams with mixed numeric and categorical values
    Wang, Shuyun
    Fan, Yingjie
    Zhang, Chenghong
    Xu, HeXiang
    Hao, Xiulan
    Hu, Yunfa
    [J]. 7TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE IN CONJUNCTION WITH 2ND IEEE/ACIS INTERNATIONAL WORKSHOP ON E-ACTIVITY, PROCEEDINGS, 2008, : 140 - +
  • [5] A Multi-View Clustering Algorithm for Mixed Numeric and Categorical Data
    Ji, Jinchao
    Li, Ruonan
    Pang, Wei
    He, Fei
    Feng, Guozhong
    Zhao, Xiaowei
    [J]. IEEE ACCESS, 2021, 9 : 24913 - 24924
  • [6] Clustering mixed numeric and categorical data with artificial bee colony strategy
    Ji, Jinchao
    Chen, Yongbing
    Feng, Guozhong
    Zhao, Xiaowei
    He, Fei
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (02) : 1521 - 1530
  • [7] Clustering algorithm for incomplete data sets with mixed numeric and categorical attributes
    Sen, Wu
    Hong, Chen
    Xiaodong, Feng
    [J]. International Journal of Database Theory and Application, 2013, 6 (05): : 95 - 104
  • [8] A k-mean clustering algorithm for mixed numeric and categorical data
    Ahmad, Amir
    Dey, Lipika
    [J]. DATA & KNOWLEDGE ENGINEERING, 2007, 63 (02) : 503 - 527
  • [9] An improved k-prototypes clustering algorithm for mixed numeric and categorical data
    Ji, Jinchao
    Bai, Tian
    Zhou, Chunguang
    Ma, Chao
    Wang, Zhe
    [J]. NEUROCOMPUTING, 2013, 120 : 590 - 596
  • [10] Fuzzy Centroid and Genetic Algorithms: Solutions for Numeric and Categorical Mixed Data Clustering
    Nooraeni, Rani
    Arsa, Muhamad Iqbal
    Projo, Nucke Widowati Kusumo
    [J]. 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 677 - 684