A SURVEY ON CLUSTERING METHODS FOR NUMERIC, CATEGORICAL AND MIXED VARIABLES DATA

被引:0
|
作者
Nisha [1 ]
Hooda, B. K. [1 ]
机构
[1] CCSHAU, Coll Basic Sci & Humanities, Dept Math & Stat, Hisar 125004, India
关键词
Clustering; Categorical variables; Mixed variables; FCM; K-prototypes; ALGORITHM;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Clustering is widely used in different fields such as biology, engineering, text mining, bioinformatics and agriculture. Most of the clustering methods use distance measures to find the similarity or dissimilarity between data objects. Traditional clustering algorithms use Euclidean distance measure to judge the similarity of two data objects. It works well when the attributes of a data set are purely quantitative. However, Euclidean distance measure fails to capture the similarity of data elements when attributes are qualitative or mixed. In this paper, clustering algorithms based on the data type containing numeric, categorical and mixed variables are reviewed such as DBSCAN, fuzzy c means, ROCK, K-modes, K-prototypes and Modified K-means.
引用
收藏
页码:675 / 679
页数:5
相关论文
共 50 条
  • [21] Topological Machine Learning for Mixed Numeric and Categorical Data
    Wu, Chengyuan
    Hargreaves, Carol Anne
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2021, 30 (05)
  • [22] A novel fuzzy K-mean algorithm with fuzzy centroid for clustering mixed numeric and categorical data
    Ji, Jinchao
    Zhou, Chunguang
    Bai, Tian
    Zhao, Jian
    Wang, Zhe
    [J]. Advances in Information Sciences and Service Sciences, 2012, 4 (07): : 256 - 264
  • [23] A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets
    Ahmad, Amir
    Dey, Lipika
    [J]. PATTERN RECOGNITION LETTERS, 2011, 32 (07) : 1062 - 1069
  • [24] CLUSTERING OF VARIABLES FOR MIXED DATA
    Saracco, J.
    Chavent, M.
    [J]. STATISTICS FOR ASTROPHYSICS: CLUSTERING AND CLASSIFICATION, 2016, 77 : 121 - 169
  • [25] A Comparison of Categorical Attribute Data Clustering Methods
    Hautamaki, Ville
    Pollanen, Antti
    Kinnunen, Tomi
    Lee, Kong Aik
    Li, Haizhou
    Franti, Pasi
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2014, 8621 : 53 - 62
  • [26] A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data (vol 30, pg 129, 2012)
    Ji, Jinchao
    Pang, Wei
    Zhou, Chunguang
    Han, Xiao
    Wang, Zhe
    [J]. KNOWLEDGE-BASED SYSTEMS, 2012, 36 : 363 - 363
  • [27] Interactive quantification of categorical variables in mixed data sets
    Johansson, Sara
    Jern, Mikael
    Johansson, Jimmy
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL INFORMATION VISUALISATION, 2008, : 3 - 10
  • [28] Clustering mixed numerical and categorical data with missing values
    Dinh, Duy-Tai
    Huynh, Van-Nam
    Sriboonchitta, Songsak
    [J]. INFORMATION SCIENCES, 2021, 571 : 418 - 442
  • [29] Performances of parallel clustering algorithm for categorical and mixed data
    Hai, NTM
    Susumu, H
    [J]. PARALLEL AND DISTRIBUTED COMPUTING: APPLICATIONS AND TECHNOLOGIES, PROCEEDINGS, 2004, 3320 : 252 - 256
  • [30] Clustering based on compressed data for categorical and mixed attributes
    Rendon, Erendira
    Sanchez, Jose Salvador
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2006, 4109 : 817 - 825