Constructing 1/ωα noise from reversible Markov chains

被引:17
|
作者
Erland, Sveinung
Greenwood, Priscilla E.
机构
[1] Norwegian Univ Sci & Technol, Dept Math, N-7491 Trondheim, Norway
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevE.76.031114
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper gives sufficient conditions for the output of 1/omega(alpha) noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/omega(alpha) condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/omega noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/omega(alpha) noise which also has a long memory.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Accelerating reversible Markov chains
    Chen, Ting-Li
    Hwang, Chii-Ruey
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (09) : 1956 - 1962
  • [2] The algebra of reversible Markov chains
    Pistone, Giovanni
    Rogantin, Maria Piera
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (02) : 269 - 293
  • [3] The algebra of reversible Markov chains
    Giovanni Pistone
    Maria Piera Rogantin
    Annals of the Institute of Statistical Mathematics, 2013, 65 : 269 - 293
  • [4] Estimation in Reversible Markov Chains
    Annis, David H.
    Kiessler, Peter C.
    Lund, Robert
    Steuber, Tara L.
    AMERICAN STATISTICIAN, 2010, 64 (02): : 116 - 120
  • [5] A monotonicity in reversible Markov chains
    Lund, Robert
    Zhao, Ying
    Kiessler, Peter C.
    JOURNAL OF APPLIED PROBABILITY, 2006, 43 (02) : 486 - 499
  • [6] Preserving the Markov Property of Reduced Reversible Markov Chains
    Weber, Marcus
    Kube, Susanna
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 593 - 596
  • [7] A combinatorial approach to nearly uncoupled Markov chains I: Reversible Markov chains
    Tifenbach, R.M. (ryan.tifenbach@mun.ca), 1600, Kent State University (40):
  • [8] A COMBINATORIAL APPROACH TO NEARLY UNCOUPLED MARKOV CHAINS I: REVERSIBLE MARKOV CHAINS
    Tifenbach, Ryan M.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2013, 40 : 120 - 147
  • [9] Multiple Ergodicity For Reversible Markov Chains
    Yuan LIU
    ActaMathematicaeApplicataeSinica, 2018, 34 (04) : 863 - 868
  • [10] Bayesian analysis for reversible Markov chains
    Diaconis, Persi
    Rolles, Silke W. W.
    ANNALS OF STATISTICS, 2006, 34 (03): : 1270 - 1292